Answer:
The variance of total loss is 8000000
Explanation:
Let
Number of hurricane
Poisson
![E(X) = 4](https://img.qammunity.org/2022/formulas/mathematics/college/2zn2jjdjciu4220kh9onn3a9f79rvef5lh.png)
Loss in each hurricane
Exponential
![E(Y) = 1000](https://img.qammunity.org/2022/formulas/mathematics/college/chs1i5atvwoygbr90qg6hdibgq89y4brll.png)
Total Loss
Required
The variance of the total loss
This is calculated as:
![Var(T) = Var(E(T|X)) + E(Var(T|X))](https://img.qammunity.org/2022/formulas/mathematics/college/txl9m7edoubnswglpnxpb60z901yx7jodi.png)
Where:
Expected total loss given X hurricanes
And it is calculated as:
--- Expected Loss in each hurricane * number of loss
Variance of total loss given X hurricanes
And it is calculated as:
---- --- Variance of loss in each hurricane * number of loss
So, we have:
![Var(T) = Var(E(T|X)) + E(Var(T|X))](https://img.qammunity.org/2022/formulas/mathematics/college/txl9m7edoubnswglpnxpb60z901yx7jodi.png)
![Var(T) = Var(E(Y) * N) + E(Var(Y) * N)](https://img.qammunity.org/2022/formulas/mathematics/college/tgr4mc8iqr6rtlrm00neo75kkmpuxqmebe.png)
For exponential distribution;
![Var(Y) = E(Y)^2](https://img.qammunity.org/2022/formulas/mathematics/college/w1m4za4qoq1qjsr4ncvlyavhj8p3u251lt.png)
So, we have:
![Var(T) = Var(E(Y) * X) + E(E(Y)^2 * X)](https://img.qammunity.org/2022/formulas/mathematics/college/xio42ll5bv91i4h4aqudgtfoho17n6k6at.png)
Substitute values
![Var(T) = Var(1000 * X) + E(1000^2 * X)](https://img.qammunity.org/2022/formulas/mathematics/college/n2goajcyt2rkznao7mv6j2d1s4j29wcas8.png)
Simplify:
![Var(T) = Var(1000 * X) + 1000^2E(X)](https://img.qammunity.org/2022/formulas/mathematics/college/za8d0g8646m8cgptgw9rz4rhs7m3tbbk6e.png)
Using variance formula, we have:
![Var(T) = 1000^2Var(X) + 1000^2E(X)](https://img.qammunity.org/2022/formulas/mathematics/college/zooh51arh9w9nq9awzilcijhfzdct42yh8.png)
For poission distribution:
![Var(X) = E(X)](https://img.qammunity.org/2022/formulas/mathematics/college/qn0rhobbg0j22b7kkoxt03y4tvcppmjd59.png)
So, we have:
![Var(X) = E(X) = 4](https://img.qammunity.org/2022/formulas/mathematics/college/41yijahvbciws3d5qfoj74tjabux8f217s.png)
The expression becomes:
![Var(T) = 1000^2*4 + 1000^2*4](https://img.qammunity.org/2022/formulas/mathematics/college/d777gedbzqmrl0vwtnnt8zfpyaq67eqmly.png)
![Var(T) = 1000000*4 + 1000000*4](https://img.qammunity.org/2022/formulas/mathematics/college/v7xefhlbolh2f8xnoep2xnbuf6rdzeqgzs.png)
![Var(T) = 4000000 + 4000000](https://img.qammunity.org/2022/formulas/mathematics/college/gckb9169py9ri1535gewxnrphf4m9jekjw.png)
![Var(T) = 8000000](https://img.qammunity.org/2022/formulas/mathematics/college/cak2a4k45gdjhca9r5mkdrnqz3rgrfrsou.png)