222k views
1 vote
Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for the differential equation Q.2 Solve the Initial value problem ln(y ^ x) * (dy)/(dx) = 3x ^ 2 * y given y(2) = e ^ 3 . Q.3 Find the general solution for the given differential equation. (dy)/(dx) = (2x - y)/(x - 2y)

Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for-example-1

1 Answer

7 votes

(Q.1)


y = (C - e^x)/(2x) \implies y' = (-2xe^x-2C+2e^x)/(4x^2) = (-xe^x-C+e^x)/(2x^2)

Then substituting into the DE gives


(-xe^x-C+e^x)/(2x^2) = -(2\left((C-e^x)/(2x)\right) + e^x)/(2x)


(-xe^x-C+e^x)/(2x^2) = -(C-e^x + xe^x)/(2x^2)


(-xe^x-C+e^x)/(2x^2) = (-C+e^x - xe^x)/(2x^2)

and both sides match, so y is indeed a valid solution.

(Q.2)


\ln\left(y^x\right)(\mathrm dy)/(\mathrm dx) = 3x^2y

This DE is separable, since you can write
\ln\left(y^x\right)=x\ln(y). So you have


x\ln(y)(\mathrm dy)/(\mathrm dx) = 3x^2y


\frac{\ln(y)}y\,\mathrm dy = 3x\,\mathrm dx

Integrate both sides (on the left, the numerator suggests a substitution):


\frac12 \ln^2(y) = \frac32 x^2 + C

Given y (2) = e ³, we find


\frac12 \ln^2(e^3) = 6 + C


C = \frac12 *3^2 - 6 = -\frac32

so that the particular solution is


\frac12 \ln^2(y) = \frac32 x^2 - \frac32


\ln(y) = \pm√(3x^2 - 3)


\boxed{y = e^(\pm√(3x^2-3))}

(Q.3) I believe I've already covered in another question you posted.

User Samccone
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.