Given:
In the given figure
.
![m\angle 10=2x+70](https://img.qammunity.org/2022/formulas/mathematics/high-school/3t2ko03g91kt9bm5nilqjh1j9aqpta4pjy.png)
![m\angle 7=5x-20](https://img.qammunity.org/2022/formulas/mathematics/high-school/rjiq0ni941yhvchdzhbkxfmxvhsv4bl48g.png)
To find:
The
.
Solution:
If a transversal line intersect two parallel lines, then the alternate exterior angles are equal.
(Alternate exterior angle)
![2x+70=5x-20](https://img.qammunity.org/2022/formulas/mathematics/high-school/rmeyejrap8oiy3haiwornxbi4agxwuqu9w.png)
![70+20=5x-2x](https://img.qammunity.org/2022/formulas/mathematics/high-school/a4ti1eahw177ejxrtfq9qtkx46rx8wfi7k.png)
![90=3x](https://img.qammunity.org/2022/formulas/mathematics/high-school/xxkmuvilkfk0werk6mwjc26742zxqihm15.png)
Divide both sides by 3.
![(90)/(3)=(3x)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/p195ti3lzt6185tbtae66paqjpuori9rsa.png)
![30=x](https://img.qammunity.org/2022/formulas/mathematics/college/sm1pi6076nq8c00dccmqp4fy39823akuov.png)
Now,
(Corresponding angles)
Therefore, the measure of angle 3 is 130 degrees.