Given:
The given function is:
![f_1(x)=-3\cdot 2^(x-5)-4](https://img.qammunity.org/2022/formulas/mathematics/high-school/co7rgnphbmawvwkz68jriiejhrwnoj0efr.png)
The graph of the function is given.
To find:
The end behavior of the given function.
Solution:
We have,
![f_1(x)=-3\cdot 2^(x-5)-4](https://img.qammunity.org/2022/formulas/mathematics/high-school/co7rgnphbmawvwkz68jriiejhrwnoj0efr.png)
From the given graph it is clear that the function approaches to -4 at x approaches negative infinite and the function approaches to negative infinite at x approaches infinite.
as
![x\to -\infty](https://img.qammunity.org/2022/formulas/mathematics/college/ngww6c0saxhgwka3hnc0c06s7lxwp7f9r1.png)
as
![x\to \infty](https://img.qammunity.org/2022/formulas/mathematics/college/hb8kx5sy5i3raoygoo9rsjcj5mss92soks.png)
Therefore, the end behaviors of the given function are:
as
![x\to -\infty](https://img.qammunity.org/2022/formulas/mathematics/college/ngww6c0saxhgwka3hnc0c06s7lxwp7f9r1.png)
as
![x\to \infty](https://img.qammunity.org/2022/formulas/mathematics/college/hb8kx5sy5i3raoygoo9rsjcj5mss92soks.png)