Answer:
![R=20.84\ lb\quad 22.57^(\circ),15.43^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/ndb2qxgfukx64szfzmvwstqz7d7zwia534.png)
Explanation:
Given
Two forces of 9 and 13 lbs acts
angle to each other
The resultant of the two forces is given by
![\Rightarrow R=√(a^2+b^2+2ab\cos \theta)](https://img.qammunity.org/2022/formulas/mathematics/college/u0j4kab5guv5qm9ka57sy22ewdkz27atzi.png)
Insert the values
![\Rightarrow R=\sqrt{9^2+13^2+2(9)(13)\cos 38^(\circ)}\\\Rightarrow R=√(81+169+184.394)\\\Rightarrow R=√(434.394)\\\Rightarrow R=20.84\ lb](https://img.qammunity.org/2022/formulas/mathematics/college/at9r4o8yiy70hits6nmskvxlc36tjfyrxj.png)
Resultant makes an angle of
![\Rightarrow \alpha=\tan^(-1)\left( (b\sin \theta)/(a+b\cos \theta)\right)\\\\\text{Considering 9 lb force along the x-axis}\\\\\Rightarrow \alpha =\tan^(-1)\left( (13\sin 38^(\circ))/(9+13\cos 38^(\circ))\right)\\\\\Rightarrow \alpha =\tan^(-1)((8)/(19.244))\\\\\Rightarrow \alpha=22.57^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/b7blemi721bozljzjqno2nyp67hh8m55ys.png)
So, the resultant makes an angle of
with 9 lb force
Angle made with 13 lb force is
![38^(\circ)-22.57^(\circ)=15.43^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/zjbmcxsdcpcg04000w8zmamgmpmjngbb0r.png)