Given:
The equation is:
![(5+x)(5-x)=7](https://img.qammunity.org/2022/formulas/mathematics/college/1tbw7osgkkptipn4dr5knn807uvvu20dal.png)
To find:
The value of A, B and C for the equation's general form.
Solution:
We have,
![(5+x)(5-x)=7](https://img.qammunity.org/2022/formulas/mathematics/college/1tbw7osgkkptipn4dr5knn807uvvu20dal.png)
Using distribution property, we get
![(5)(5)+(5)(-x)+(x)(5)+(x)(-x)=7](https://img.qammunity.org/2022/formulas/mathematics/college/omu8jbtkhbe8ey62h8gsr83o28n0li2lau.png)
![25-5x+5x-x^2=7](https://img.qammunity.org/2022/formulas/mathematics/college/x1rpq3vcqkc8ezvjt9pvyn6676ed2ctuma.png)
![25-x^2=7](https://img.qammunity.org/2022/formulas/mathematics/college/15n98h6flup33f8f5ml03xo8ki7rmfu73t.png)
Taking all terms on one side, we get
![25-x^2-7=0](https://img.qammunity.org/2022/formulas/mathematics/college/t169wigqe7dwie8sn95x5okpt7ka161ruc.png)
![-x^2+18=0](https://img.qammunity.org/2022/formulas/mathematics/college/dh783xgpov6jiez0vzgpoq5k231v0he0of.png)
![-(x^2-18)=0](https://img.qammunity.org/2022/formulas/mathematics/college/7sdklki5zfv3n3ual42luc595en8fqws28.png)
![x^2-18=0](https://img.qammunity.org/2022/formulas/mathematics/college/6z89wb0wf4ygogcikfjfe77w8s2qyjs83m.png)
On comparing this equation with the general form of a quadratic equation
, we get
![A=1](https://img.qammunity.org/2022/formulas/mathematics/college/itpfoikzyovk70exsad9z5kmrg5trzq4rx.png)
![B=0](https://img.qammunity.org/2022/formulas/mathematics/college/pibofp3v6ba75u1pbvzrrkrmlqxcillnxb.png)
![C=-18](https://img.qammunity.org/2022/formulas/mathematics/college/7p37f8y6n1vzmbt7v4305atwx5etz5w174.png)
Therefore, the correct option is 1.