15.8k views
1 vote
Find the areas in that unit square PQRS, P(4,3), Q(4,1), S(-1,3), R(-1,1)

User Monergy
by
5.0k points

1 Answer

2 votes

Answer:

Explanation:

P(4,3), Q(4,1), S(-1,3), R(-1,1)


Distance =\sqrt{(x_(2)-x_(1))^(2)+(y_(2) -y_(1))^(2)}\\\\PQ= \sqrt{(4-4)^(2)+(1-3)^(2)}\\\\=\sqrt{(-2)^(2)}\\\\\=√(4)\\\\=2 \ units\\\\\\QS=\sqrt{(-1-4)^(2)+(3-1)^(2)}\\\\=\sqrt{(-5)^(2)+(2)^(2)}\\\\=√(25+4)\\\\=√(29)\ units\\\\\\SR =\sqrt{(-1-[-1])^(2)+(1-3)^(2)}\\\\=\sqrt{(-1+1)^(2)+(-2)^(2)}\\\\=√(0+4)\\\\= √(4)\\\\= 2 \\\\\\PR = \sqrt{(-1-4)^(2)+(1-3)^(2)}\\\\=\sqrt{(-5)^(2)+(-2)^(2)}\\\\=√(25+4)\\\\=√(29)\\\\

PQRS is a rectangle

Area= length *breadth

= 2 * √29

= 2√29 sq.units

User Jjbskir
by
4.3k points