Given:
The table of values of an exponential function.
To find:
The decay factor of the exponential function.
Solution:
The general form of an exponential function is:
...(i)
Where, a is the initial value and
is the decay factor and
is the growth factor.
The exponential function passes through the point (0,6). Substituting
in (i), we get
![6=ab^0](https://img.qammunity.org/2022/formulas/mathematics/high-school/mbhhfr0tcm436ig17x7ihu6hdkp1zopbd4.png)
![6=a(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gvye5se56rgu3n320q2sycyfe1uf3vfn6i.png)
![6=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/84i4xzgbmuy0f375gh5fczobm78u5d0plr.png)
The exponential function passes through the point (1,2). Substituting
in (i), we get
![2=6(b)^1](https://img.qammunity.org/2022/formulas/mathematics/high-school/6wy7fbemalyp6tt7zpwymebq5ud9y7ld0c.png)
![2=6b](https://img.qammunity.org/2022/formulas/mathematics/high-school/39d5vdcaq78dp80pchn1dinc0dyxuxlafd.png)
![(2)/(6)=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/b90ijeqe6t105qbx69e88fyrl4vjurornf.png)
![(1)/(3)=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/n0ho68spaxyle95xa6uedr16qnnwvli9aj.png)
Here,
lies between 0 and 1. Therefore, the decay factor of the given exponential function is
.
Hence, the correct option is A.