107k views
2 votes
Differentiate 4^xlnx

User Maij
by
4.3k points

1 Answer

4 votes

If you mean


(\mathrm d)/(\mathrm dx)\left[4^x\ln(x)\right]

then first write
4^x=e^(\ln(4^x))=e^(\ln(4)x). Then by the product rule,


(\mathrm d)/(\mathrm dx)\left[4^x\ln(x)\right] = \ln(4)e^(\ln(4)x)\ln(x) + \frac{e^(\ln(4)x)}x = \ln(4)4^x\ln(x)+\frac{4^x}x=\frac{4^x}x\left(\ln(4)x\ln(x)+1\right)

If you instead mean


(\mathrm d)/(\mathrm dx)\left[4^(x\ln(x))\right]

you can again rewrite
4^(x\ln(x)) = e^{\ln\left(4^(x\ln(x))\right)}=e^(x\ln(x)\ln(4)). Then by the chain and product rules,


(\mathrm d)/(\mathrm dx)\left[4^(x\ln(x))\right] = e^(x\ln(x)\ln(4))\ln(4)\left(\ln(x)+1\right) = 4^(x\ln(x))\ln(4)(\ln(x)+1)

User Eevar
by
4.6k points