Answer:
Problem 17)
![\displaystyle y=-(5)/(2)x+(7)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/dsw68llbi0o3511lqn1uzyv78oa9mhrmkg.png)
Problem 18)
![\displaystyle y=(3)/(2)x-(3)/(2)+(\pi)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/ynvim9w25ydtru7ye2z8mtxv3h0kdz70qe.png)
Explanation:
Problem 17)
We have the curve represented by the equation:
![\displaystyle 4x^2+2xy+y^2=7](https://img.qammunity.org/2022/formulas/mathematics/college/gabps9v0nb724abs9s1ys9byx79g66nzpz.png)
And we want to find the equation of the tangent line to the point (1, 1).
First, let's find the derivative dy/dx. Take the derivative of both sides with respect to x:
![\displaystyle (d)/(dx)\left[4x^2+2xy+y^2\right]=(d)/(dx)[7]](https://img.qammunity.org/2022/formulas/mathematics/college/31nddfd6avtnjdbs6jc4imnnv6onczf60a.png)
Simplify. Recall that the derivative of a constant is zero.
![\displaystyle (d)/(dx)[4x^2]+(d)/(dx)[2xy]+(d)/(dx)[y^2]=0](https://img.qammunity.org/2022/formulas/mathematics/college/o4qjlvlbzm38um493ww3y8aecynzjn6c28.png)
Differentiate. We can differentiate the first term normally. The second term will require the product rule. Hence:
![\displaystyle 8x+\left(2y+2x(dy)/(dx)\right)+2y(dy)/(dx)=0](https://img.qammunity.org/2022/formulas/mathematics/college/t4xu5jjh5lg5vj6bgb1zws3won1qyrkn58.png)
Rewrite:
![\displaystyle (dy)/(dx)\left(2x+2y\right)=-8x-2y](https://img.qammunity.org/2022/formulas/mathematics/college/jf94u73yyigpp3ryjyn81zmkw4xy2gxf9s.png)
Therefore:
![\displaystyle (dy)/(dx)=(-8x-2y)/(2x+2y)=-(4x+y)/(x+y)](https://img.qammunity.org/2022/formulas/mathematics/college/uoi8in7drqn273v2vrrayfds821v6ub3ab.png)
So, the slope of the tangent line at the point (1, 1) is:
![\displaystyle (dy)/(dx)\Big|_((1, 1))=-(4(1)+(1))/((1)+(1))=-(5)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/hsa53roeoar9u1cu8mbwl9vxv0g4q7ac3p.png)
And since we know that it passes through the point (1, 1), by the point-slope form:
![\displaystyle y-1=-(5)/(2)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/esl219cy0lyid7ibmnvb1av360y269wh23.png)
If desired, we can simplify this into slope-intercept form. Therefore, our equation is:
![\displaystyle y=-(5)/(2)x+(7)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/dsw68llbi0o3511lqn1uzyv78oa9mhrmkg.png)
Problem 18)
We have the equation:
![\displaystyle y=\tan^(-1)\left(x^3\right)](https://img.qammunity.org/2022/formulas/mathematics/college/5c31hxafag9pes8joxarsirwj0ckuddycj.png)
And we want to find the equation of the tangent line to the graph at the point (1, π/4).
Take the derivative of both sides with respect to x:
![\displaystyle (dy)/(dx)=(d)/(dx)\left[\tan^(-1)(x^3)]](https://img.qammunity.org/2022/formulas/mathematics/college/df9pbmz4pdmm8c4d0bwf94ttv2fc6iupue.png)
We can use the chain rule:
![\displaystyle (d)/(dx)[u(v(x))]=u'(v(x))\cdot v(x)](https://img.qammunity.org/2022/formulas/mathematics/college/wb3zs06f9n91qmkqvwafe5cmfvrr988tte.png)
Let u(x) = tan⁻¹(x) and let v(x) = x³. Thus:
(Recall that d/dx [arctan(x)] = 1 / (1 + x²).)
![\displaystyle (d)/(dx)\left[\tan^(-1)(x^3)\right]=(1)/(1+v^2(x))\cdot 3x^2](https://img.qammunity.org/2022/formulas/mathematics/college/xn7xfh4lzcf8i6kpc8s24z4gph47ynu9um.png)
Substitute and simplify. Hence:
![\displaystyle (d)/(dx)\left[\tan^(-1)(x^3)\right]=(1)/(1+v^2(x))\cdot 3x^2=(3x^2)/(1+x^6)](https://img.qammunity.org/2022/formulas/mathematics/college/6forb96hybcyj1doxqofvoiqvhh3qh0v88.png)
Then the slope of the tangent line at the point (1, π/4) is:
![\displaystyle (dy)/(dx)\Big|_(x=1)=(3(1)^2)/(1+(1)^6)=(3)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/g67en2222m3kww8lzxc1t44uzeugb565j7.png)
Then by the point-slope form:
![\displaystyle y-(\pi)/(4)=(3)/(2)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/5vcyd7gr6m2xjcb3d4bf5nf38un6c75zxh.png)
Or in slope-intercept form:
![\displaystyle y=(3)/(2)x-(3)/(2)+(\pi)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/ynvim9w25ydtru7ye2z8mtxv3h0kdz70qe.png)