31.1k views
3 votes
Let ℤ be the set of all integers and let, (20) 0 = ∈ ℤ, 1 = ∈ ℤ, 2 = ∈ ℤ, 3 = = 4 + 3, for some integer . Is {0, 1, 2, 3 } a partition of ℤ? Explain your answer.

1 Answer

1 vote

Answer:


\{0, 1, 2, 3\} is a partition of Z

Explanation:

Given


$$A _ { 0 } = \{n \in \mathbf { Z } | n = 4 k$$, for some integer k
\}


$$A _ { 1 } = \{ n \in \mathbf { Z } | n = 4 k + 1$$, for some integer k},


$$A _ { 2 } = { n \in \mathbf { Z } | n = 4 k + 2$$, for some integer k},

and


$$A _ { 3 } = { n \in \mathbf { Z } | n = 4 k + 3$$,for some integer k}.

Required

Is
\{0, 1, 2, 3\} a partition of Z

Let


k = 0

So:


$$A _ { 0 } = 4 k


$$A _ { 0 } = 4 k \to $$A _ { 0 } = 4 * 0 = 0


$$A _ { 1 } = 4 k + 1$$,


A _ { 1 } = 4 *0 + 1$$ \to A_1 = 1


A _ { 2 } = 4 k + 2


A _ { 2} = 4 *0 + 2$$ \to A_2 = 2


A _ { 3 } = 4 k + 3


A _ { 3 } = 4 *0 + 3$$ \to A_3 = 3

So, we have:


\{A_0,A_1,A_2,A_3\} = \{0,1,2,3\}

Hence:


\{0, 1, 2, 3\} is a partition of Z

User Utku
by
3.0k points