188k views
5 votes
A uniformly dense solid disk with a mass of 4 kg and a radius of 4 m is free to rotate around an axis that passes through the center of the disk and perpendicular to the plane of the disk. The rotational kinetic energy of the disk is increasing at 21 J/s. If the disk starts from rest through what angular displacement (in rad) will it have rotated after 3.3 s?

1 Answer

3 votes

Answer:

3.44 rad

Step-by-step explanation:

The rotational kinetic energy change of the disk is given by ΔK = 1/2I(ω² - ω₀²) where I = rotational inertia of solid sphere = MR²/2 where m = mass of solid disk = 4 kg and R = radius of solid disk = 4 m, ω₀ = initial angular speed of disk = 0 rad/s (since it starts from rest) and ω = final angular speed of disk

Since the kinetic energy is increasing at a rate of 21 J/s, the increase in kinetic energy in 3.3 s is ΔK = 21 J/s × 3.3 s = 69.3 J

So, ΔK = 1/2I(ω² - ω₀²)

Since ω₀ = 0 rad/s

ΔK = 1/2I(ω² - 0)

ΔK = 1/2Iω²

ΔK = 1/2(MR²/2)ω²

ΔK = MR²ω²/4

ω² = (4ΔK/MR²)

ω = √(4ΔK/MR²)

ω = 2√(ΔK/MR²)

Substituting the values of the variables into the equation, we have

ω = 2√(ΔK/MR²)

ω = 2√(69.3 J/( 4 kg × (4 m)²))

ω = 2√(69.3 J/[ 4 kg × 16 m²])

ω = 2√(69.3 J/64 kgm²)

ω = 2√(1.083 J/kgm²)

ω = 2 × 1.041 rad/s

ω = 2.082 rad/s

The angular displacement θ is gotten from

θ = ω₀t + 1/2αt² where ω₀ = initial angular speed = 0 rad/s (since it starts from rest), t = time of rotation = 3.3 s and α = angular acceleration = (ω - ω₀)/t = (2.082 rad/s - 0 rad/s)/3.3 s = 2.082 rad/s ÷ 3.3 s = 0.631 rad/s²

Substituting the values of the variables into the equation, we have

θ = ω₀t + 1/2αt²

θ = 0 rad/s × 3.3 s + 1/2 × 0.631 rad/s² (3.3 s)²

θ = 0 rad + 1/2 × 0.631 rad/s² × 10.89 s²

θ = 1/2 × 6.87159 rad

θ = 3.436 rad

θ ≅ 3.44 rad

User Mayur Bhola
by
5.0k points