211k views
0 votes
(I+ tan square theta)(1-sin square theta)​

2 Answers

3 votes

Answer:


(1 + \tan {}^(2) ( \alpha ) )(1 - \sin {}^(2) ( \alpha ) ) \\ = \frac{1}{ \cos {}^(2) ( \alpha ) } * \cos {}^(2) ( \alpha ) \\ = 1

User Winder
by
4.0k points
4 votes

Answer:

1

Explanation:

Formulas used:


sin^2 \theta + cos^2\theta = 1 => 1-sin^2 \theta = cos^2 \theta\\\\tan^2 \theta + 1 = sec^2 \theta


Q) \ (1 + tan^2 \theta)(1-sin^2 \theta)\\\\= \ sec^2 \theta * cos^2 \theta\\\\=(1)/(cos^2 \theta) * cos^2 \theta\\\\= 1

User PyRabbit
by
4.0k points