232k views
19 votes

\left \lgroup\displaystyle\rm \sum_(k=0)^(\infty){1\over k!}\int_0^(\infty){\cos(x)\over \displaystyle x^2+1}\text{d}x \over \displaystyle \rm \int_0^\infty{√(x)\over x^2+2x+5}dx \right \rgroup^(2)

1 Answer

8 votes

I use complex analysis to compute the integrals in question.

First, notice that the first integrand is even:


(\cos(-x))/((-x)^2+1)=(\cos(x))/(x^2+1)


\implies\displaystyle\int_0^\infty(\cos(x))/(x^2+1)\,dx=\frac12\int_(-\infty)^\infty(\cos(x))/(x^2+1)\,dx

Consider a contour C that's the union of

• Γ, a semicircle of radius R in the upper half-plane, and

• the line segment connecting the points (-R, 0) and (R, 0)

On Γ, we have
z=Re^(it) with 0 ≤ t ≤ π.

Consider the complex function


f(z)=(e^(iz))/(z^2+1)

and notice that our original integrand is the real part of f(z). Then the integral of f(z) over C is


\displaystyle\int_Cf(z)\,dz=\lim_(R\to\infty)\left(\int_(-R)^Rf(z)\,dz+\int_\Gamma f(z)\,dz\right)

As R → ∞, the first integral on the right is exactly twice the one we want. Estimate the second one to be bounded by


\displaystyle\left|\int_\Gamma f(z)\,dz\right|\le\pi R|f(z)|\le(\pi R)/(R^2-1)

since


|z^2+1|\ge\bigg||z^2|-|-1|\bigg|=|R^2-1|

and so the integral along Γ vanishes.

f(z) has only one pole in the interior of C at z = i. By the residue theorem,


\displaystyle\int_Cf(z)\,dz=2\pi i\,\mathrm{Res}\left(f(z),z=i\right)=2\pi i\lim_(z\to i)(z-i)f(z)=\frac\pi e


\implies\displaystyle\int_0^\infty(\cos(x))/(x^2+1)\,dx=\frac12\mathrm{Re}\left(\int_Cf(z)\,dz\right)=\frac\pi{2e}

For the second integral, we recall that for complex z,


\sqrt z=\exp\left(\frac12\left(\ln|z|+i\arg(z)\right)\right)

Consider a keyhole contour C, the union of


\Gamma_R, the larger circle with radius R and
z=Re^(it), with 0 < t < 2π ;


\Gamma_\varepsilon, the smaller circle with radius ε and
z=\varepsilon e^(-it), with 0 < t < 2π ;


\ell_1, the line segment above the positive real axis joining
\Gamma_\varepsilon to
\Gamma_R ; and


\ell_2, the other line segment below the positive real axis joining
\Gamma_R to
\Gamma_\varepsilon

Then


\displaystyle\int_Cf(z)\,dz=\int_(\Gamma_R)f(z)\,dz+\int_(\ell_1)f(z)\,dz+\int_(\Gamma_\varepsilon)f(z)\,dz+\int_(\ell_2)f(z)\,dz

and in the limit, the integral over
\ell_1 converges to the one we want.

Estimate the integrals over the circular arcs:


\Gamma_R :


\displaystyle\left|\int_(\Gamma_R)f(z)\,dz\right|\le2\pi R|f(Re^(it))|\le(2\pi R^(3/2))/(|R-\sqrt5|^2)\to0

as R → ∞.


\Gamma_\varepsilon :


\displaystyle\left|\int_(\Gamma_\varepsilon)f(z)\,dz\right|\le2\pi \varepsilon|f(\varepsilon e^(-it))|\le(2\pi\varepsilon^(3/2))/(|\varepsilon-\sqrt5|^2)\to0

as ε → 0.

Consider the integral over
\ell_2 :


\displaystyle\int_(\ell_2)f(z)\,dz=\int_R^\varepsilon(\sqrt z)/(z^2+2z+5)\,dz\\\\=\int_R^\varepsilon(\exp\left(\frac12\left(\ln|z|+2\pi i\right)\right))/(z^2+2z+5)\,dz\\\\=-\int_R^\varepsilon(\exp\left(\frac12\ln|z|\right))/(z^2+2z+5)\,dz\\\\=\int_\varepsilon^R(\sqrt z)/(z^2+2z+5)\,dz\\\\=\int_(\ell_1)f(z)\,dz

so in fact,


\displaystyle\int_Cf(z)\,dz=2\int_0^\infty(\sqrt x)/(x^2+2x+5)\,dx

By the residue theorem,


\displaystyle\int_Cf(z)\,dz=2\pi i\sum_(\rm poles)\mathrm{Res}\,f(z)

We have poles at z = -1 + 2i and z = -1 - 2i. On our chosen branch,


√(-1+2i)=i\sqrt[4]{5}\exp\left(-\frac i2\tan^(-1)(2)\right)


√(-1-2i)=i\sqrt[4]{5}\exp\left(\frac i2\tan^(-1)(2)\right)

The residues are


\mathrm{Res}(f(z),z=-1-2i)=\frac{i\sqrt[4]{5}\exp\left(\frac i2\tan^(-1)(2)\right)}{-4i}


\mathrm{Res}(f(z),z=-1+2i)=\frac{i\sqrt[4]{5}\exp\left(-\frac i2\tan^(-1)(2)\right)}{4i}

Their sum is


\displaystyle\sum_(\rm poles)\mathrm{Res}\,f(z)=-\frac{\sqrt[4]{5}}2\sin\left(\frac12\tan^(-1)(2)\right)=-\frac{\sqrt[4]{5}}2\sqrt{(5-\sqrt5)/(10)}=-\frac i2√(\frac1\phi)

where ɸ = (√5 + 1)/2 is the golden ratio, and so the overall integral is


\displaystyle\int_0^\infty(\sqrt x)/(x^2+2x+5)\,dx=\frac\pi2√(\frac1\phi)

Lastly, recall


\displaystyle\sum_(k=0)^\infty\frac1{k!}=e

Then our expression reduces to


\left(\frac{e*\frac\pi{2e}}{\frac\pi2√(\frac1\phi)}\right)^2=\boxed{\phi}

User Francoisxavier
by
4.7k points