48.4k views
2 votes

\huge{\boxed{ \sum_(n=1)^(\infty)(3n)/(3^n \: n!)=}}

User Ben
by
3.1k points

1 Answer

7 votes


HOLA!!

Answer:


{\boxed{ \sum_(n=1)^(\infty)(3n)/(3^n \: n!)=e^{(1)/(3) } }}

Explanation:


{\boxed{ \sum_(n=1)^(\infty)(3n)/(3^n \: n!)=}}

For this we have to take into account:


{\boxed{ \sum_(n=1)^(\infty)(x^(n) )/(n!) =e^(x) }}

Using the properties of factorials and exponents we have:


n!=(n-1)n! Also.
(n^(x) )/( n^(y) )=n^(x-y)

We replace:


{\boxed{ \sum_(n=1)^(\infty)\ (1)/(3^(n-1).(n-1)! ) }}

Shape it:


{\boxed{ \sum_(n=1)^(\infty)(((1)/(3) )^(n-1) )/((n-1)!) }}

Finally:


{\boxed{ \sum_(n=1)^(\infty)(((1)/(3) )^(n-1) )/((n-1)!) =e^{(1)/(3) } }}

User Danette
by
3.2k points