Answer:
D =
![\sqrt{(216W)/(35L) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/n1pvwn1h6kx6s5hexxzzcflzgqpcz9f8o5.png)
Explanation:
From the given question, the expression showing the relationship among the weight, length and diameter of the metal bar is;
W
L
![D^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u8044c7hmzr6macj20a7mzzoq6rowp3azr.png)
W = kL
![D^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u8044c7hmzr6macj20a7mzzoq6rowp3azr.png)
where k is the constant of proportionality.
When W = 140, D = 4 and L = 54, then;
140 = k(54)
![(4)^(2)](https://img.qammunity.org/2022/formulas/mathematics/middle-school/7yuc2cyjq9opui2uan4vbco1sf7mntmyng.png)
= 864k
k =
![(140)/(864)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ktcf6ljc0yhj58kr2zm8l2aqft8rcfwp60.png)
=
![(35)/(216)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q67z46kgtdn9r18kykzr81elpztizsvsus.png)
k =
![(35)/(216)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q67z46kgtdn9r18kykzr81elpztizsvsus.png)
⇒ W =
![(35LD^(2) )/(216)](https://img.qammunity.org/2022/formulas/mathematics/high-school/brxbbxmfqqpye504tgz55eosi7xvu4c3vt.png)
So that;
35L
= 216W
=
![(216W)/(35L)](https://img.qammunity.org/2022/formulas/mathematics/high-school/oqckkzd78osbqql8u9rqgraqfdl1agnz9m.png)
D =
![\sqrt{(216W)/(35L) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/n1pvwn1h6kx6s5hexxzzcflzgqpcz9f8o5.png)