Answer:
a) 2 nonsingular 2 by 2 matrices are not closed when added together hence it is not a vector space( i.e. their sum = singular and not nonsingular )
b) 2 singular 2 by 2 matrices is not closed under addition, hence they are not a vector space. ( i.e. their sum = nonsingular )
Explanation:
a) Prove that nonsingular 2 by 2 matrices is not a vector space
2 nonsingular matrices are not closed when added together hence it is not a vector space ( i.e. their sum = singular and not nonsingular )
vector A =
+ vector B =
=
( singular vector )
b) Prove that singular 2 by 2 matrices is not a vector space
2 singular 2 by 2 matrices is not closed under addition, hence they are not a vector space. ( i.e. their sum = nonsingular )
Vector C =
+ vector D =
=
( nonsingular vector )