Answer:
![(2, -1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/chyu900fobc5bymaotl0fmb1ggo5tbg305.png)
Explanation:
Given the system of equations:
![\begin{cases}5x+7y=3,\\2x+3y=1\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/fxvmf7qyshekuck16ucjpesrmz4sgtqdm8.png)
Multiply the first equation by -2 and the second equation by 5, then add both equations to solve for
:
![\begin{cases}-2(5x+7y)=(-2)3,\\5(2x+3y)=(5)1\end{cases},\\\begin{cases}-10x-14y=-6,\\10x+15y=5\end{cases},\\-10x+10x-14y+15y=-6+5,\\y=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/jinm2het0h2hs5y5fjj3vzkpnzkurweq6t.png)
Substitute
into any equation to solve for
:
![2x+3y=1,\\2x+3(-1)=1,\\2x-3=1,\\2x=4,\\x=\boxed{2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/gi7jq4p4y1drc5j8pzyfr02dl2bv99oqi0.png)
Therefore, the solution to this system of equations is
![\boxed{(2, -1)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kzdcllme501ifv4zb3kv0oie87wijcwiap.png)