Answer:
![\cos(\theta) = (8√(113))/(113)\\\\](https://img.qammunity.org/2022/formulas/mathematics/college/rkas28sm4gijs9043hfg878hlxhx5et7i4.png)
=================================================
Work Shown:
x^2+y^2 = r^2
(8)^2+(-7)^2 = r^2
113 = r^2
r = sqrt(113)
The distance from (0,0) to (8,-7) is exactly sqrt(113) units.
This is the exact length of the hypotenuse of the right triangle.
Next, we do the following steps:
![\cos(\text{angle}) = \frac{\text{adjacent}}{\text{hypotenuse}}\\\\\cos(\theta) = (x)/(r)\\\\\cos(\theta) = (8)/(√(113))\\\\\cos(\theta) = (8√(113))/(√(113)*√(113))\\\\\cos(\theta) = (8√(113))/(√(113*113))\\\\\cos(\theta) = (8√(113))/(√(113^2))\\\\\cos(\theta) = (8√(113))/(113)\\\\](https://img.qammunity.org/2022/formulas/mathematics/college/usd3kr0gotj6lkutcfo6hxd62lamvj7b3c.png)
Side note: cosine is positive in quadrant Q4.