157k views
0 votes
Solve the system of equations by finding the reduced row-echelon form of the augmented matrix for the system of equations.

x + y - z = -2
2x - y + 3z = 9
x - 4y - 2z = 1

User HedeH
by
5.5k points

1 Answer

2 votes

Answer:

x = 1 , y = - 1 , z = 2

Explanation:


\begin{pmatrix}1&1&-1&-2\\ 2&-1&3&9\\ 1&-1&-2&1\end{pmatrix}\\\\\\= \begin{pmatrix}2&-1&3&9\\ 1&1&-1&-2\\ 1&-1&-2&1\end{pmatrix}
[ \ swap \ R_1 \ and \ R_2 \ ]


=\begin{pmatrix}2&-1&3&9\\ 0&(3)/(2)&-(5)/(2)&-(13)/(2)\\ 1&-4&-2&1\end{pmatrix}
[ \ R_2 = R_2 - (1)/(2) R_1 \ ]


=\begin{pmatrix}2&-1&3&9\\ 0&(3)/(2)&-(5)/(2)&-(13)/(2)\\ 0&-(7)/(2)&-(7)/(2)&-(7)/(2)\end{pmatrix}
[ \ R_3 = R_3 - (1)/(2) R_1 \ ]


=\begin{pmatrix}2&-1&3&9\\ 0&-(7)/(2)&-(7)/(2)&-(7)/(2)\\ 0&(3)/(2)&-(5)/(2)&-(13)/(2)\end{pmatrix}
[ \ swap \ R_2 \ and \ R_3 \ ]


=\begin{pmatrix}2&-1&3&9\\ 0&-(7)/(2)&-(7)/(2)&-(7)/(2)\\ 0&0&-4&-8\end{pmatrix}
[ \ R_3 = R_3 + (3)/(7)R_2 \ ]

Therefore,


-4z = - 8\\\\z = 2


-(7)/(2) y - (7)/(2)z = -(7)/(2)\\\\y + z = 1\\\\y + 2 = 1 \\\\y = 1 - 2 = - 1


2x - 1y + 3z = 9\\\\2x -1(-1) + 3(2) = 9\\\\2x + 1 + 6 = 9\\\\2x = 9 - 7\\\\2x = 2 \\\\x = 1

User Ayman Mahgoub
by
5.9k points