86.5k views
4 votes
Calculus 2. Please help

Calculus 2. Please help-example-1
User Abahet
by
7.7k points

1 Answer

5 votes

Answer:


\displaystyle \int\limits^1_0 {(1)/(xe^(x^2))} \, dx = \infty

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:
\displaystyle \int {(e^x)/(x)} \, dx = Ei(x) + C

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \int\limits^1_0 {(e^(-x^2))/(x) \, dx
  2. [Integral] Rewrite [Improper Integral]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) \int\limits^1_a {(e^(-x^2))/(x) \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set:
    \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:
    \displaystyle (du)/(dx) = -2x
  3. [Derivative] Rewrite:
    \displaystyle du = -2x \ dx

Rewrite u-substitution to format u-solve.

  1. Rewrite du:
    \displaystyle dx = (-1)/(2x) \ dx

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) -\int\limits^1_a {-(e^(-x^2))/(x) \, dx
  2. [Integral] Substitute in variables:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) -\int\limits^1_a {(e^(u))/(-2u) \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) (1)/(2)\int\limits^1_a {(e^(u))/(u) \, du
  4. [Integral] Substitute [Exponential Integral Function]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) (1)/(2)[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) (1)/(2)[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) (1)/(2)[Ei(-1) - Ei(a)]
  7. Simplify:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \lim_(a \to 0^+) (Ei(-1) - Ei(a))/(2)
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx = \infty


\displaystyle \int\limits^1_0 {(1)/(xe^(x^2)) \, dx diverges.

Topic: Multivariable Calculus

User Taurus Olson
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories