Given:
AD is diameter of the circle, AB is the tangent, and measure of arc ADC is 228 degrees.
To find:
The
and
.
Solution:
AD is diameter of the circle. So, the measure of arc AD is 180 degrees.
![m(arcADC)=m(arcAD)+m(arcDC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5nzuuagb8wbtl7ax5rv2kb7zsithnyo4pw.png)
![228^\circ=180^\circ+m(arcDC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4ue3dw8zxt6qzfuov8e60qdm6hg5qhmuf1.png)
![228^\circ-180^\circ+=m(arcDC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/l98o8wfm9f6e2jj5qdulh14t86cwpug0xm.png)
![48^\circ+=m(arcDC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bpaa5xsej3e80ycbgrwnf4ve9f1uxiykys.png)
The measure inscribed angle is half of the corresponding subtended arc.
![m\angle CAD=(1)/(2)* m(arcDC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/czxsdrduz9lx5pl76ori15ke3hprdpdi2x.png)
![m\angle CAD=(1)/(2)* 48^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/hw3fae4s091nrjmcbnth1clyyzv5r6z98e.png)
![m\angle CAD=24^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/kafrgpb41obai53q2jn6p8z5b0avh64173.png)
AB is the tangent. So,
because radius is perpendicular on the tangent and the point of tangency.
![m\angle BAD=m\angle CAB+m\angle CAD](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4bkyx8qj0jxec61rpo0nh1nxd7qnr5yve.png)
![90^\circ=m\angle CAB+24^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/8oa54697oyxmh3ky1ajf0rqv2szmdaoqeg.png)
![90^\circ -24^\circ=m\angle CAB](https://img.qammunity.org/2022/formulas/mathematics/high-school/ncmjg0vsknw2mxfeetrzwbct098845u7h2.png)
![66^\circ=m\angle CAB](https://img.qammunity.org/2022/formulas/mathematics/high-school/y5lll5xyr2qpbmg3e9xnp3nuh8s9o7930z.png)
Therefore,
and
.