Answer:
The general limit exists at x = 9 and is equal to 300.
Explanation:
We want to find the general limit of the function:
![\displaystyle \lim_(x \to 9)(x^2+2^7+(9.1* 10))](https://img.qammunity.org/2022/formulas/mathematics/college/6vvysf1srzaigkbnlqjgwq2vxrjvl5m6dz.png)
By definition, a general limit exists at a point if the two one-sided limits exist and are equivalent to each other.
So, let's find each one-sided limit: the left-hand side and the right-hand side.
The left-hand limit is given by:
![\displaystyle \lim_(x \to 9^-)(x^2+2^7+(9.1 * 10))](https://img.qammunity.org/2022/formulas/mathematics/college/78oyx0fbk73rxlnjh472dqanxk25rpocsf.png)
Since the given function is a polynomial, we can use direct substitution. This yields:
![=(9)^2+2^7+(9.1* 10)](https://img.qammunity.org/2022/formulas/mathematics/college/6b36yxg2yqr6hiiuiqq6rjg97gf82hotl1.png)
Evaluate:
![300](https://img.qammunity.org/2022/formulas/mathematics/high-school/8r1yid0jmijg7rg3ec2geglcobx0n2kkuo.png)
Therefore:
![\displaystyle \lim_(x \to 9^-)(x^2+2^7+(9.1 * 10))=300](https://img.qammunity.org/2022/formulas/mathematics/college/uxknqsyboam87ecpkgktk3lt8v9px7y1zp.png)
The right-hand limit is given by:
![\displaystyle \lim_(x \to 9^+)(x^2+2^7+(9.1* 10))](https://img.qammunity.org/2022/formulas/mathematics/college/l69p4jzhez7i5brlh4bj7vmokgwrgvemuf.png)
Again, since the function is a polynomial, we can use direct substitution. This yields:
![=(9)^2+2^7+(9.1* 10)](https://img.qammunity.org/2022/formulas/mathematics/college/6b36yxg2yqr6hiiuiqq6rjg97gf82hotl1.png)
Evaluate:
![=300](https://img.qammunity.org/2022/formulas/mathematics/college/43t8y31ky6rme269lok025t860rwqp6pcz.png)
Therefore:
![\displaystyle \lim_(x \to 9^+)(x^2+2^7+(9.1* 10))=300](https://img.qammunity.org/2022/formulas/mathematics/college/5ci1te5satuj2e4bivyr8u0zjab4ulmghx.png)
Thus, we can see that:
![\displaystyle \lim_(x \to 9^-)(x^2+2^7+(9.1* 10))=\displaystyle \lim_(x \to 9^+)(x^2+2^7+(9.1* 10))=300](https://img.qammunity.org/2022/formulas/mathematics/college/ybef1ep294icthyp33lfwqcwz3gqickhjp.png)
Since the two-sided limits exist and are equivalent, the general limit of the function does exist at x = 9 and is equal to 300.