Given:
The function is:
![f(x)=(x+4)/(x^2-25)](https://img.qammunity.org/2022/formulas/mathematics/college/lagrj9qs9aywglb0z974vm9w8076s82ky1.png)
To find:
The values that are NOT in the domain of the given function.
Solution:
We have,
![f(x)=(x+4)/(x^2-25)](https://img.qammunity.org/2022/formulas/mathematics/college/lagrj9qs9aywglb0z974vm9w8076s82ky1.png)
This function is a rational function and it is defined for all real values of x except the values for which the denominator is equal to 0.
Equate the denominator and 0.
![x^2-25=0](https://img.qammunity.org/2022/formulas/mathematics/college/vrz8gi07spfjolqhlvk5aj3np3foduzfbx.png)
![x^2=25](https://img.qammunity.org/2022/formulas/mathematics/high-school/aqfubsv2h5ioqhfuss417vl4dcal9almxm.png)
Taking square root on both sides, we get
![x=\pm √(25)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cmqdep20mjt3bj656swzfqxp9r2uu42g2r.png)
![x=\pm 5](https://img.qammunity.org/2022/formulas/mathematics/high-school/uncg1oznxjcpdmdueqmiqpa2ze1bkpt92t.png)
So, the values
are not in the domain of the given function.
Therefore, the correct option is D.