Answer:
b= (3z-6)/(1+3z)
Explanation:
z=(-b+6)/(3b-3)
cross multiple
z(3b-3)=-b+6
open the bracket
3bz-3z=-b+6
make -b the subject of the formula
-b = 3bz-3z-6
-b - 3bz = -3z - 6
factorize the left hand side...
-b(1+3z) = -3z-6
make -b the subject of the formula again
-b = -(3z-6)/(1+3z)
cancel the minus at both sides...
b = (3z-6)/(1+3z)