11.0k views
0 votes
Please answer and explain the link below

Please answer and explain the link below-example-1

1 Answer

4 votes

Answer:

See explanation.

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = \left \{ {{√(x + 1), \ x < 3} \atop {5 - x, \ x \geq 3}} \right.

Step 2: Find Right Limit

  1. Substitute in variables [Right-Side Limit]:
    \displaystyle \lim_(x \to 3^+) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 3^+) 5 - x = 5 - 3
  3. Subtract:
    \displaystyle \lim_(x \to 3^+) 5 - x = 2

∴ the right-side limit equals 2.

Step 3: Find Left Limit

  1. Substitute in variables [Left-Side Limit]:
    \displaystyle \lim_(x \to 3^-) √(x + 1)
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = √(3 + 1)
  3. [√Radical] Add:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = √(4)
  4. [√Radical] Evaluate:
    \displaystyle \lim_(x \to 3^-) √(x + 1) = 2

∴ the left-side limit equals 2.

Step 4: Find Limit

The right and left-side limits are equal.


\displaystyle \lim_(x \to 3) f(x) = 2

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

Book: College Calculus 10e

User Michaeltwofish
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories