Answer:
Explanation:
Smaller Canister:
Height, h = 12cm
Diameter = 9cm
Radius, r = 4.5 cm
![Volume = \pi r^2h\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/7qc3gtx85g9f7usad4rnuhedaivlfer6uc.png)
![=\pi * 4.5^2 * 12\\\\=243 \pi \ cm^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/u1hdaycv2j6dii8l9sezmw07thogya97wj.png)
![Surface \ area = 2 \pi r(r + h)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/td1yl56gdxmgn0fj2jqi6t9akbx0u13uyv.png)
![=2 * \pi * 4.5 ( 4.5 + 12)\\\\= \pi * 9(16.5)\\\\=148.5 \ cm^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/1hr9ig1q0wga46xiaevo26ob7m9xuraz39.png)
Larger Canister:
Measures double the smaller canister, that is
height, H = 24 cm
Diameter = 18cm
Radius, R = 9cm
![Volume = \pi R^2 H\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/d5j3jpomh9zm5djc2togzeax1go1y1hgik.png)
![= \pi * 9^2 * 24\\\\= \pi * 81 * 24 \\\\= 1944 \pi](https://img.qammunity.org/2022/formulas/mathematics/high-school/52sbcfm4srfqikqazwn55qwh1zzfbwtanh.png)
![Surface \ area = 2 \pi R(R+ H)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xr16v856kdttnxafbrpmpd7w0rdukvvohu.png)
![= \pi * 2 * 9 ( 9 + 24) \\\\= \pi * 18(33)\\\\=594 \pi \ cm^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/hnbal416wf4kc9u7b89qhods63lqz98zyq.png)
Comparing results :
![Volume_(small) = \pi r^2 h\\\\Volume_(large) = \pi R^2 H = \pi(2r)^2(2h) = \pi(4r^2)(2h)= 8 \pi r^2h = 8 * volume_(small)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4iqo56t6xtesgvc3hp93wcsv9brz0bnbhd.png)
Therefore, volume of larger canister is 8 times the volume of smaller canister.
![Surface\ area _(larger) = 2 \pi R(R + H) = 2 \pi(2r)((2r+2h))\\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/2s1kcaka3tq2hvgqmk4g95ita35i50psz1.png)
![=2 \ pi * 2r * 2 (r+ h)\\\\= 4 * 2\pi r(r+ h) \\\\= 4 * surface\ area_(smaller)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qnzp2eibjel99ovf7824ze8uly2h94yr3y.png)
Therefore, surface area of larger canister is 4 times the surface area of smaller canister.