11.5k views
13 votes
What is the volume of a cylinder , whose base diameter us of 20cm and height of 5cm.



1 Answer

12 votes


\boxed{\tt \pink{Given:}}


\red\starDiameter of base of a cylinder = 20 cm.


\red\starHeight of cylinder = 5cm.


\\\\


\boxed{\tt \pink{To~Find:}}


\red\starVolume of Cylinder.


\\\\


\boxed{\tt \pink{Solution}}

To find volume of Cylinder first we should know radius of Cylinder. We can get radius by diameter using this formula:-


\boxed{\rm Diameter = 2 radius}


\\\\


\hookrightarrow\sf Diameter = 2 radius


\\


\hookrightarrow\sf 20= 2 radius


\\


\hookrightarrow\sf (20)/(2)= radius


\\


\hookrightarrow\sf (2*10)/(2)= radius


\\


\hookrightarrow \sf (\cancel2*10)/(\cancel2)= radius


\\


\hookrightarrow \sf (1*10)/(1)= radius


\\


\hookrightarrow \sf 10= radius


\\


\hookrightarrow \bf radius = \pmb{\blue{10 cm}}


\\\\

Now Finally Let's find volume of Cylinder.

we know:-


\boxed{\rm Volume ~ of ~ Cylinder = \pi radius^2 * height}


\\\\

So:-


\dashrightarrow\sf Volume ~of ~Cylinder = \pi radius^2* height\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi (10)^2* 5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi 10*10*5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi 100*5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi* 500\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = (22)/(7)* 500\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = (11000)/(7)\\


\\\\


\dashrightarrow\bf Volume ~of ~Cylinder =\pmb{\blue{1,571.4~cm}}\\

KNOW MORE:-


\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc}\small\underline{\sf{\pmb{ \gray{More \: Formulae}}}} \\ \\ \bigstar \: \bold{CSA_((cylinder)) = 2\pi \: rh}\\ \\\bigstar \: \bold{Volume_((cylinder)) = \pi {r}^(2) h}\\ \\ \bigstar \: \bold{TSA_((cylinder)) = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bold{CSA_((cone)) = \pi \: r \: l}\\ \\ \bigstar\: \bold{TSA_((cone)) = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bold{Volume_((sphere)) = (4)/(3)\pi {r}^(3) }\\ \\ \bigstar \: \bold{Volume_((cube)) ={(side)}^(3) }\\ \\ \bigstar \: \bold{CSA_((cube)) = 4 {(side)}^(2) }\\ \\ \bigstar \: \bold{TSA_((cube)) = 6 {(side)}^(2) }\\ \\\bigstar \: \bold{Volume_((cuboid)) = lbh}\\ \\ \bigstar \: \bold{CSA_((cuboid)) = 2(l + b)h}\\ \\ \bigstar \: \bold{TSA_((cuboid)) = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

User Smoke
by
4.2k points