11.5k views
13 votes
What is the volume of a cylinder , whose base diameter us of 20cm and height of 5cm.



1 Answer

12 votes


\boxed{\tt \pink{Given:}}


\red\starDiameter of base of a cylinder = 20 cm.


\red\starHeight of cylinder = 5cm.


\\\\


\boxed{\tt \pink{To~Find:}}


\red\starVolume of Cylinder.


\\\\


\boxed{\tt \pink{Solution}}

To find volume of Cylinder first we should know radius of Cylinder. We can get radius by diameter using this formula:-


\boxed{\rm Diameter = 2 radius}


\\\\


\hookrightarrow\sf Diameter = 2 radius


\\


\hookrightarrow\sf 20= 2 radius


\\


\hookrightarrow\sf (20)/(2)= radius


\\


\hookrightarrow\sf (2*10)/(2)= radius


\\


\hookrightarrow \sf (\cancel2*10)/(\cancel2)= radius


\\


\hookrightarrow \sf (1*10)/(1)= radius


\\


\hookrightarrow \sf 10= radius


\\


\hookrightarrow \bf radius = \pmb{\blue{10 cm}}


\\\\

Now Finally Let's find volume of Cylinder.

we know:-


\boxed{\rm Volume ~ of ~ Cylinder = \pi radius^2 * height}


\\\\

So:-


\dashrightarrow\sf Volume ~of ~Cylinder = \pi radius^2* height\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi (10)^2* 5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi 10*10*5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi 100*5\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = \pi* 500\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = (22)/(7)* 500\\


\\\\


\dashrightarrow\sf Volume ~of ~Cylinder = (11000)/(7)\\


\\\\


\dashrightarrow\bf Volume ~of ~Cylinder =\pmb{\blue{1,571.4~cm}}\\

KNOW MORE:-


\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc}\small\underline{\sf{\pmb{ \gray{More \: Formulae}}}} \\ \\ \bigstar \: \bold{CSA_((cylinder)) = 2\pi \: rh}\\ \\\bigstar \: \bold{Volume_((cylinder)) = \pi {r}^(2) h}\\ \\ \bigstar \: \bold{TSA_((cylinder)) = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bold{CSA_((cone)) = \pi \: r \: l}\\ \\ \bigstar\: \bold{TSA_((cone)) = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bold{Volume_((sphere)) = (4)/(3)\pi {r}^(3) }\\ \\ \bigstar \: \bold{Volume_((cube)) ={(side)}^(3) }\\ \\ \bigstar \: \bold{CSA_((cube)) = 4 {(side)}^(2) }\\ \\ \bigstar \: \bold{TSA_((cube)) = 6 {(side)}^(2) }\\ \\\bigstar \: \bold{Volume_((cuboid)) = lbh}\\ \\ \bigstar \: \bold{CSA_((cuboid)) = 2(l + b)h}\\ \\ \bigstar \: \bold{TSA_((cuboid)) = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

User Smoke
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories