Answer:
x = 3.24, x = -1.24
Explanation:
The standard form for a quadratic equation is
. For your equation a = 1, b = -2, c = -4. The quadratic formula you will be using is
.
Plug in a = 1, b = -2, and c = -4 into the formula.
![=(-\left(-2\right)\pm √(\left(-2\right)^2-4\cdot \:1\cdot \left(-4\right)))/(2\cdot \:1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lago2dx5zq1xfi4rlt4dsyhr6j9wpngs2o.png)
We'll do the top part first:
![√(\left(-2\right)^2-4\cdot \:1\cdot \left(-4\right))](https://img.qammunity.org/2022/formulas/mathematics/high-school/aipc3e5inwdlqapeetw4ag7q5oss9ohes8.png)
Apply rule
![- (-a) = a](https://img.qammunity.org/2022/formulas/mathematics/high-school/4cht9x53tc5a382nj4uqaovxmnfer678gv.png)
![=√(\left(-2\right)^2+4\cdot \:1\cdot \:4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ny03o60nf42krsw1ffoxyidfr0ch50b48g.png)
Apply exponent rule
if
is even
![(-2)^2=2^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/rjczd3ucdoh25ega536huwv4e7rq93k4nf.png)
![=√(2^2+4\cdot \:1\cdot \:4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bae6rfgxahlsv3p33bizu2elfbqnzifaom.png)
Multiply the numbers
![=√(2^2+16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ozy2t5oxnyfyfzmkbsjpl4tngn50jtuf6a.png)
![2^2=4](https://img.qammunity.org/2022/formulas/mathematics/college/e5f4kgtqh3b82kqps9ipb0nwj59nqx1xh0.png)
![=√(4+16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bpgrjgplnufhk55s3yahkhcyuerivhwunw.png)
Add
![=√(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/c2qhheb2isatcz9qakhky8aa1nbuvjytwq.png)
The prime factorization of 20 is
![2^2*5](https://img.qammunity.org/2022/formulas/mathematics/high-school/ahe1ri1ptt66xin7cp61umd23a6zvakria.png)
20 divides by 2. 20 = 10 * 2
![=2*10](https://img.qammunity.org/2022/formulas/mathematics/high-school/thp0ziiodol9ke1p55pz03inugz5f6pxy9.png)
10 divides by 2. 10 = 5 * 2
![=2* \:2*5](https://img.qammunity.org/2022/formulas/mathematics/high-school/z76xg3gwjngyyurk597qge063url3mpbq6.png)
2 & 5 are prime numbers so you don't need to factor them anymore
![=2*2*5](https://img.qammunity.org/2022/formulas/mathematics/high-school/rf28ip0kdm70r2czf4sh1ejwi9txzku8s2.png)
![=2^2*5](https://img.qammunity.org/2022/formulas/mathematics/high-school/695bljn0oipzg62n2r5r5bt5awni4hubg8.png)
![=√(2^2\cdot \:5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lwkagvandc2re3erhxynk5fe9fkwvbixxy.png)
Apply radical rule
![\sqrt[n]{ab} =\sqrt[n]{a} \sqrt[n]{b}](https://img.qammunity.org/2022/formulas/mathematics/high-school/wmdv6pntulyz4nthapo63n6q5zzhbijt9x.png)
![=√(5)√(2^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1e073pnibrobrtzwoo7w1o1vo1z71e1tx4.png)
Apply radical rule
;
![√(2^2) =2](https://img.qammunity.org/2022/formulas/mathematics/college/c1tnii7otmslqsqggkz1rz0k5kkol7c1p5.png)
![=2√(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/a83q4yvge7idtj6omvfhe5o0y9hwedckds.png)
![=(-\left(-2\right)\pm \:2√(5))/(2\cdot \:1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i4lrfflq8lbw3mor57ch80b5s7hikyszgv.png)
Because of the
you have to separate the solutions so that one is positive and the other is negative.
![x=(-\left(-2\right)+2√(5))/(2\cdot \:1),\:x=(-\left(-2\right)-2√(5))/(2\cdot \:1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/472tqkyf9ojcyohdatpa12p7tpzo7gdhom.png)
Positive x:
![(-\left(-2\right)+2√(5))/(2\cdot \:1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ku6gmafzr3j396iomjao6kayt2t5afyzy5.png)
Apply rule
![-(-a)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/4npj5v4yhy3xcakk8hdufq9pzh31e3wd7d.png)
![=(2+2√(5))/(2\cdot \:1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrl58uv5hgacn7rigm8d4cwrroyue16yb5.png)
Multiply
![=(2+2√(5))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/40mqgqib9qau3rjwm43rfoyo1or11pl1tk.png)
Factor
and rewrite it as
. Factor out 2 because it is the common term.
.
![=(2\left(1+√(5)\right))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v65fgxydzjx4nvffn85s41b2r0izn81e96.png)
Divide 2 by 2
or
(You'll probably have to use a calculator for the square root of 5)
^Repeating the process of positive x for negative x in order to get
or
![x=-1.24](https://img.qammunity.org/2022/formulas/mathematics/high-school/nzwe82rlmb955k1ghf12agdi8splwncbzu.png)