Given:
The given figure of a triangle.
To find:
The value of x.
Solution:
According to the angle bisector theorem, the angle bisector of a triangle divides the opposite side in two parts that are proportional to other two sides of the triangle.
Using angle bisector theorem, we get
![(2x-5)/(21)=(10)/(24-10)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k8cmur4lje35ngut2xzioroy1a1pehuw8v.png)
![(2x-5)/(21)=(10)/(14)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nfuol8t5sre0wqsyqcr4zd43s2amkshjw9.png)
![(2x-5)/(21)=(5)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k485n3vmlh72hvitsn9js5k2pe9zaokty1.png)
Multiply both sides by 21.
![(2x-5)/(21)* 21=(5)/(7)* 21](https://img.qammunity.org/2022/formulas/mathematics/high-school/l7vuazc3igcb5ifauw5ufgcj8lqgc1yqgx.png)
![2x-5=15](https://img.qammunity.org/2022/formulas/mathematics/high-school/68plcx8vxgnzhb8nxu6lfl0xbp4oo2bo33.png)
![2x=15+5](https://img.qammunity.org/2022/formulas/mathematics/high-school/ipvu3j58ctsflpwv98r3mkvvyn91qjvhs7.png)
![2x=20](https://img.qammunity.org/2022/formulas/mathematics/high-school/mh10diuffhk2ueiiobt8zxygc3w1x1i8k1.png)
Divide both sides by 2.
![x=(20)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jpp9564nlj2hunfilgrwc2ym8rprnu5zzy.png)
![x=10](https://img.qammunity.org/2022/formulas/mathematics/high-school/73ltnq8a3crfk111hyc6lpiuufywuosb.png)
Therefore, the value of x is 10.