Given:
Number of red marbles = 5
Number of blue marbles = 4
Number of yellow marbles = 3
To find:
The probability of pulling a red marble, then pulling a blue marble, without replacement.
Solution:
Probability formula:
![\text{Probability}=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}](https://img.qammunity.org/2022/formulas/mathematics/college/19jixr484t4x702voh9w59elv415sedgcz.png)
We have,
Number of red marbles = 5
Total number of marbles is:
![5+4+3=12](https://img.qammunity.org/2022/formulas/mathematics/high-school/8i19a9l6rcdfsd2cphtkutge4zvfcgi93j.png)
Probability of getting a red marble is:
![P(Red)=(5)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pz1vjc242rgr52ssu62w98u7ib18xvnso2.png)
After selecting one red marble, the remaining number of marbles is 11 and the number of blue marbles is 3. So,
![P(Blue)=(4)/(11)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f7qv21icisiym0mzqfq3bggl3dm3vuewij.png)
Now, the probability of pulling a red marble, then pulling a blue marble, without replacement is:
![\text{Probability percentage}=P(Red)* P(Blue)* 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/llk40i9chjqpilb03eptug2achh9lsmxfv.png)
![\text{Probability}=(5)/(12)* (4)/(11)* 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/ppguuks5hqydq17ziibdd00rz71mqxdivi.png)
![\text{Probability}=15.1515...](https://img.qammunity.org/2022/formulas/mathematics/high-school/u6llh42smbgp15g40xmrvfktnzbnkqnjwc.png)
![\text{Probability}\approx 15.2\%](https://img.qammunity.org/2022/formulas/mathematics/high-school/ql3r87a5e3bjkjoza073a5k9auw0x5mnlx.png)
Therefore, the correct option is B.