105k views
3 votes
Moving the probe 1 cm towards the non-grounded electrode changes the value the potential from about 0.90 V to about 1.2 V. Explain how you can get the magnitude of the average electric field between these two points on the paper, and give the value of this field in Newtons/Coulomb. Show your calculations.

User Asimov
by
4.8k points

1 Answer

6 votes

Answer:

-30 N/C

Step-by-step explanation:

Since the potential changes from 0.90 V to 1.2 V when I move the probe 1 cm closer to the non-grounded electrode, the electric field is the gradient between the two points is given by E = -ΔV/Δx where ΔV = change in electric potential and Δx = distance of potential change = 1 cm = 0.01 m

Now ΔV = final potential - initial potential = 1.2 V - 0.90 V = 0.30 V

Since E = -ΔV/Δx

substituting the values of the variables into the equation, we have

E = -ΔV/Δx

E = -0.30 V/0.01 m

E = -30 V/m

Since 1 V/m = 1 N/C.

E = -30 N/C

So, the average electric field is -30 N/C

User Cassmtnr
by
5.3k points