Given:
M is the midpoint of AB.
M(2,0) and A(-3, 3).
To find:
The coordinates of point B.
Solution:
Midpoint formula:
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/ej12unagq872xsay3nec0mk8wdb0s1fbkk.png)
Let the coordinates of point B are (a,b). Then, using the midpoint formula, we get
![(2,0)=\left((-3+a)/(2),(3+b)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/amzq691dhvw0136ayp2bflsysg0dwhsfqe.png)
On comparing both sides, we get
![(-3+a)/(2)=2](https://img.qammunity.org/2022/formulas/mathematics/college/eqx6yju63yzfjay7sy8mm50wyz0xw9yvyh.png)
![-3+a=2* 2](https://img.qammunity.org/2022/formulas/mathematics/college/c43cyf0k6crhrgvius4n7rb1fzr4ajb5ls.png)
![a=4+3](https://img.qammunity.org/2022/formulas/mathematics/college/jlc5y69rrcz0cepkpx4hyh2ybs3wjrkuqt.png)
![a=7](https://img.qammunity.org/2022/formulas/mathematics/high-school/8a86dj6xx93mwj50lxn1sq472xjqnl7g4h.png)
And,
![(3+b)/(2)=0](https://img.qammunity.org/2022/formulas/mathematics/college/z1wawt1xui1p5xf75eqnptd9oafk0u1opo.png)
![3+b=0](https://img.qammunity.org/2022/formulas/mathematics/college/du3b2n20x4n3iyc8jmpsmnn71jy9vtk9pt.png)
![3+b-3=0-3](https://img.qammunity.org/2022/formulas/mathematics/college/3axozey2rpr8c985sruql2ri3rb5h12q26.png)
![b=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/iqek42n19iyptl2pgpz9nzo2vu5ss2mbxs.png)
Therefore, the coordinates of point B are (7,-3).