179k views
2 votes
Find the area of the surface generated when the given curve is revolved about the given axis. 5x^1/3

User Kathayatnk
by
4.6k points

1 Answer

2 votes

Answer:


\mathbf{ (\pi)/(675)\Big[ 34√(34) -125\Big] }

Explanation:

The curve x = f(y)

The area of the surface around the y-axis from y = a → y = b is:


=\int^b_a 2 \pi x \sqrt{1 + ((dx)/(dy))^2} \ dy

From the given curve:


y = (5x)^{^{(1)/(3)} ; assuming the region bounded by the curve is 0 ≤ y ≤ 1

So;


y = (5x)^{^{(1)/(3)}

5x = y³


x = (1)/(5)y^3

The differential of the above equation Is:


(dx)/(dy)= (1)/(5) * (3y^2)


(dx)/(dy)= (3)/(5)y^2

Now, we have the area of the surface produced around the curve
x = (1)/(5)y^3 through the y axis from the region y = 0 to y = 1


= \int ^1_0 2 \pi (1)/(5)y^3 \sqrt{1 + ((3)/(5)y^2)^2} \ dy


= ( 2 \pi)/(5) \int ^1_0 y^3 \sqrt{1 + (9)/(25)y^4} \ dy


= ( 2 \pi)/(5) \int ^1_0 y^3 \sqrt{ (25+9y^4)/(25)} \ dy


= ( 2 \pi)/(5) \int ^1_0 y^3 (√(25+9y^4))/(5)} \ dy


= ( 2 \pi)/(25) \int ^1_0 y^3 √(25+9y^4)} \ dy

Let make
u = √(25+9y^4)

It implies that:


u^3 = (25+9y^4)√(25+9y^4)


u = √(25+9y^4) \\\\ du = (1)/(2√(25 +9y^4))(36y^3) \ dy


du = (18y^3)/(√(25 +9y^4))\ dy


y^3dy = (1)/(18)√(25+9y^4) \ du

when y = 0 ;


u = √(25+ 9(0)^4)


u = √(25)

u = 5

when y = 1;


u = √(25+ 9(1)^4)


u = √(25+9)


u = √(34)

The equation
( 2 \pi)/(25) \int ^1_0 y^3 √(25+9y^4)} \ dy can be written as:


= (2 \pi)/(25) \int ^(√(34))_(5) (u ) (1)/(18) \ udu


= (2 \pi)/(25* 18) \int ^(√(34))_(5) (u ) \ udu


= (\pi)/(225) \int ^(√(34))_(5) (u^2 ) \ udu


= (\pi)/(225)\Big[ (u^3)/(3) \Big] ^(√(34))_(3)\\


\mathbf{= (\pi)/(675)\Big[ 34√(34) -125\Big] }

User LegendofPedro
by
3.9k points