Answer:
The equation has a maximum value with a y-coordinate of -21.
Explanation:
Given
![y =-3x^2 + 12x - 33](https://img.qammunity.org/2022/formulas/mathematics/high-school/4q27ew4o2nv01baqmlkb3bkuc6iwmyp2vb.png)
Required
The true statement about the extreme value
First, write out the leading coefficient
![Leading = -3](https://img.qammunity.org/2022/formulas/mathematics/high-school/gxg1w8w6fc53gtvi7eztegufd4anlbfjz1.png)
means that the function would be a downward parabola;
Downward parabola always have their vertex on top of the parabola and as such, the function has a maximum value.
The maximum value is:
![x = -(b)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/y2b6geafz1pjruxwouwwx7w862vr6wz9s6.png)
Where:
![a= -3; b =12; c =-33](https://img.qammunity.org/2022/formulas/mathematics/high-school/5p71tkyo363382e9sm4cqurrbnh2dl5sli.png)
So, we have:
![x = -(12)/(2 * -3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vda2g1acz2xa7xp7hj4j84kgq39yng21we.png)
![x = -(12)/(-6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lxwat3nmlijy5qij3ikoxvq1xhav52myf0.png)
![x =2](https://img.qammunity.org/2022/formulas/history/college/ngofd42vdtopntwbbozgw0kmqgnuolcmgd.png)
Substitute
in
![y =-3x^2 + 12x - 33](https://img.qammunity.org/2022/formulas/mathematics/high-school/4q27ew4o2nv01baqmlkb3bkuc6iwmyp2vb.png)
![y = -3*2^2 + 12 * 2 - 33](https://img.qammunity.org/2022/formulas/mathematics/high-school/7xy7ivdwna0x3yxuo59hberhgou9sefhll.png)
![y = -21](https://img.qammunity.org/2022/formulas/mathematics/high-school/mqoscev59i17x6tghva96dhj7bubyn03av.png)
Hence, the maximum is -21.