220k views
6 votes
How can I factor 5x^2 + 26x - 24 = 0 using the completing the square method.

User Djolf
by
8.2k points

2 Answers

12 votes
The answer is -8 with using the completing the square method
User Jenine
by
9.4k points
5 votes

QUADRATIC EQUATION


\mathbb{ANSWER:}


  • \bold{x = 0.8 \: } \: \sf \: {\color{grey}or} \: \: \: \bold{ x= (4)/(5) } \\


  • \bold{x = - 6}

— — — — — — — — — —

Explanation:

How can we factor 5x^2 + 26x - 24 = 0 using the completing the square method?

Let's solve your equation step-by-step.


\bold{Given \: Equation: \color{brown} 5x²+26x-24=0}

First, add 24 to both sides.


  • \bold{5x²+26x-24 - \purple{ 24} = 0 + \purple{24}}


  • \bold{ \implies \: 5x²+26x = 24 }

Since the coefficient of 5x² is 5, divide both sides by 5.


  • \bold{ \frac{5 {x}^(2) + 26x }{5} = (24)/(5) } \\


  • \bold{ \implies \: {x}^(2) + (26)/(5) x = (24)/(5) } \\

The coefficient of 26/5x is 26/5. So, let b=26/5.

Then we need to add (b/2)²=169/25 to both sides to complete the square.

Add 169/25 to both sides.


  • \bold{ {x}^(2) + (26)/(5) x + \frac{ \purple{169}}{ \purple{25}}= (24)/(5) + \frac{ \purple{169}}{ \purple{25}} } \\


  • \bold{ \implies \:\bold{ {x}^(2) + (26)/(5) x + \frac{ 169}{ {25}}= (289)/(25) } } \\

Factor the left side.


  • \bold{(x + (13)/(5) ) {}^(2) = (289)/(25) } \\

Take square root.


  • \bold{x + (13)/(5) = ± \: \sqrt{ (289)/(25) }} \\

Then, add (-13)/5 to both sides.


  • \bold{x + (13)/(5) + \frac{\purple{ - 13} }{\purple{ 5}} = \frac{{ - 13} }{{ 5}} ± \: \sqrt{ (289)/(25)}} \\


  • \bold{ \: x = ( - 13)/(5) ± \sqrt{ (289)/(25) } } \\


  • \implies \: \underline{ \boxed{ \bold{ (4)/(5) } \sf \: \: or \: \: \bold{ x = - 6}}} \\

_______________❖_______________

User Antwarpes
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories