Correct Question :-
If sec
+ tan
= x , then prove that ,
![\implies\sf sin\theta =(x^2-1)/(x^2+1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yiwnryx1gzhj49kwvckv10xl05r96o76yf.png)
Proof :-
Here we are given that ,
![\longrightarrow \sec\theta + tan\theta = x](https://img.qammunity.org/2023/formulas/mathematics/high-school/qd6fpwe9mvonitftwiu420p4n8s4air9za.png)
Firstly write everything in terms of sine and cosine .
![\longrightarrow (1)/(\cos\theta)+(\sin\theta)/(\cos\theta)=x](https://img.qammunity.org/2023/formulas/mathematics/high-school/s14ly5urjix3536ouwxw4e8eft788bg7bf.png)
Add ,
![\longrightarrow (1+\sin\theta)/(\cos\theta)=x](https://img.qammunity.org/2023/formulas/mathematics/high-school/djajjlbdsoqel716kv0m2ztxaxibffldsk.png)
On squaring both sides , we have ;
![\longrightarrow ((\sin\theta+1)^2)/((\cos\theta)^2)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/f5ztcekgjcvhk8211zhbf3m0e7f4ohrvdc.png)
Simplify using identity sin²x + cos²x = 1 ,
![\longrightarrow ((1+\sin\theta)^2)/(1-\sin^2\theta)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/65p9b99qxoxlig3mstdevn250tvio45e10.png)
Simplify using identity (a+b)(a-b)=a²-b² ,
![\longrightarrow ((1+\sin\theta)^2)/((1+\sin\theta)(1-\sin\theta))=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/52pmwm2jpq8r5d14kl6g2k7xm750j0955f.png)
Simplify,
![\longrightarrow (1+\sin\theta)/(1-\sin\theta)=x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/z76drgq6fwts1vitawhanfl0orkmbtsozb.png)
On using Componendo and Dividendo , we have ;
![\longrightarrow (1+\sin\theta+1-\sin\theta)/(1+\sin\theta-1+\sin\theta)=(x^2+1)/(x^2-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3k4g2cm9r0g2iqm5w0jvnh1dz1oi1e2e56.png)
![\longrightarrow (2)/(2\sin\theta)=(x^2+1)/(x^2-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/97tt8giwxmim350q2ixmwakohjdw7la7uz.png)
Simplify,
![\longrightarrow (1)/(\sin\theta)=(x^2+1)/(x^2-1)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/j5rpjnrr876uz9m9oi733ose6uv3y5ssus.png)
Divide both the sides by 1 ,
![\longrightarrow \underline{\underline{\sin\theta =(x^2-1)/(x^2+1)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vjb55rymy3yk5jdwro6sepaibrznb8jfct.png)
Hence proved .
And we are done !
![\rule{200}4](https://img.qammunity.org/2023/formulas/physics/high-school/o3h1hh7lkhtu2fyo2fq1563wudp0nzumxm.png)
More to Know :-
1) Trigonometric table :-
![\small{ \begin{tabular}c \cline{1-6} \theta & \sf 0^(\circ) & \sf 30^(\circ) & \sf 45^(\circ) & \sf 60^(\circ) & \sf 90^(\circ) \\ \cline{1-6} $ \sin $ & 0 & $(1)/(2 )$ & $(1)/( √(2) )$ & $( √(3))/(2)$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ ( √( 3 ))/(2) } $ & $ (1)/( √(2) ) $ & $ ( 1 )/( 2 ) $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ (1)/( √(3) ) $ & 1 & $ √(3) $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ √(3) $ & 1 & $ (1)/( √(3) ) $ &0 \\ \cline{1 - 6} \sec & 1 & $ (2)/( √(3)) $ & $ √(2) $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ √(2 ) $ & $ ( 2 )/( √( 3 ) ) $ & 1 \\ \cline{1 - 6}\end{tabular}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c0mrwpg8uamlx8lc4t5krcufqeitcb45r3.png)
![\rule{200}4](https://img.qammunity.org/2023/formulas/physics/high-school/o3h1hh7lkhtu2fyo2fq1563wudp0nzumxm.png)
2) Important identities :-
![\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6aw0fqmiadg11nre15s7l696ycbgj4rz29.png)
![\rule{200}4](https://img.qammunity.org/2023/formulas/physics/high-school/o3h1hh7lkhtu2fyo2fq1563wudp0nzumxm.png)