62.6k views
2 votes
Please help me out real quick.​

Please help me out real quick.​-example-1

1 Answer

7 votes

Answer:


\text{B. }3x+4=3x+2√(3x-11)-10 only for
3x+4\in [0, \infty)

Explanation:

Key formulas used:


  • √(x)^2=|x|

  • (a+b)^2=a^2+2ab+c^2

Given
√(3x+4)=1+√(3x-11),

We can use the first formula on the left side of the equation.

In this case, for
√(x)^2=|x|,
x=3x+4, we have:


√(3x+4)^2=|3x+4|

Similarly, we can use the second formula on the right side of the equation.

In this case, for
(a+b)^2=a^2+2ab+c^2,
a=1, b=√(3x-11), we have:


(1+√(3x-11))^2=1^2+2\cdot 1\cdot √(3x-11)+√(3x-11)^2,\\=1+2√(3x-11)+3x-11,\\=3x+2√(3x-11)-10

Therefore, when you square both sides of the equation, you get:


\boxed{\text{B. }3x+4=3x+2√(3x-11)-10}

*Important:

This answer choice is actually only correct if
3x+4>0, because of the first formula we used. If
3x+4<0 (negative), then
3x+4\\eq √(3x+4)^2,\text{ if }3x-4<0. Graphically, you can show this since the line
y=√(x)^2 is not equal to
y=x but instead
y=|x|.
y=√(x^2) and
y=x only overlap if you restrict the domain to
[0, \infty) (positive numbers), hence
\text{B. }3x+4=3x+2√(3x-11)-10 only for
3x+4\in [0, \infty).

User Michael Fever
by
5.3k points