Answer:
--- equation
--- focus
--- directrix
---- focal width
Explanation:
Given
![depth = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/y2ekigv4te85diqyvbxxcimm36bss4tq3s.png)
![diameter = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/dgvu88953jcoyu2izitj2kumob04sw0rk7.png)
Required
The equation of parabola
The depth represents the y-axis. So:
![y = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/d5k2rv5rmh3vyar1fv9nhzrpy9al6014xf.png)
The diameter represents how the parabola is evenly distributed across the x-axis.
We have:
![diameter = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/dgvu88953jcoyu2izitj2kumob04sw0rk7.png)
-2 to 2 is 4 units.
So:
![x = [-2,2]](https://img.qammunity.org/2022/formulas/mathematics/high-school/6rdqove8wlx7gb1qcupnjjjmn9uug5kine.png)
So, the coordinates of the parabola is:
![(-2,2)\ and\ (2,2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/scdlco1opufhz9ywmpc6bomrvutcais6hu.png)
The equation of the parabola is calculated using:
![x^2 = 4py](https://img.qammunity.org/2022/formulas/mathematics/high-school/hfhb719qjkl4zu04jmtmbh0zl6rbpx8ecz.png)
Substitute (-2,2) for (x,y)
![(-2)^2 = 4p*2](https://img.qammunity.org/2022/formulas/mathematics/high-school/u7l3gqu0w0q74kpr30mtoypodn0702v5zx.png)
![4 = 8p](https://img.qammunity.org/2022/formulas/mathematics/high-school/esegcr3o2w5dz7nmep7bdch9nh34jwygz0.png)
Divide by 8
![p = (4)/(8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ft4x93en9r22buz9a12s6lrvknc0u46sof.png)
![p = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g2um14wgz66wj1wyjsl4slo143rczvj0tl.png)
So, the equation is:
![x^2 = 4py](https://img.qammunity.org/2022/formulas/mathematics/high-school/hfhb719qjkl4zu04jmtmbh0zl6rbpx8ecz.png)
![x^2 = 4 * (1)/(2) * y](https://img.qammunity.org/2022/formulas/mathematics/high-school/79ditg0z1w114qp2r6q5j1q8q092sk3984.png)
![x^2 = 2y](https://img.qammunity.org/2022/formulas/mathematics/college/lfu8xr4r8b1wod5td642j0t5d53vtnp81p.png)
The defining features
(a) Focus
The focus is located at:
![(x,y) = (0,p)](https://img.qammunity.org/2022/formulas/mathematics/high-school/l624i6dvanubpc9ccgfn4tu4pxmxum0wsb.png)
![(x,y) = (0,(1)/(2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/doegai6gx46mqvib630eplvw1etrq30q59.png)
(b) Directrix (y)
![y = -p](https://img.qammunity.org/2022/formulas/mathematics/high-school/rbxz2d1ol7pt3bpv5p94f1qzeiz951q7zj.png)
![y = -(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dh7tyi3qo192lnty1y804l5v5qpj5sz3ll.png)
(c) Focal width
![Width = 4p](https://img.qammunity.org/2022/formulas/mathematics/high-school/5vcmq96h9i8zgvd6aoi6s73jniq3jzvrrq.png)
![Width = 4*(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rm38bedgke3budm22g8ttdfltl2hkbnf5v.png)
![Width = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/q9gslqkt4tu5g38fr1yjopcvqtzp28z1h8.png)