Given:
Area of a sector = 64 m²
The central angle is
.
To find:
The radius or the value of r.
Solution:
Area of a sector is:
![A=(1)/(2)r^2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/ow2k95rs7k4h4qnqyxmxlv3avpf2482xbu.png)
Where, r is the radius of the circle and
is the central angle of the sector in radian.
Putting
, we get
![64=(1)/(2)r^2* (\pi)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/v2hwemer0cu50xv5kflgzm5hqwyyclvaew.png)
![64=(\pi)/(12)r^2](https://img.qammunity.org/2022/formulas/mathematics/college/q2ukjs9hni95a037kzs4f4qhlt0x8dukxr.png)
![64* (12)/(\pi)=r^2](https://img.qammunity.org/2022/formulas/mathematics/college/wxmtbvi43w2opylbpllre8vbqc0fjsvf7m.png)
![(768)/(\pi)=r^2](https://img.qammunity.org/2022/formulas/mathematics/college/6qvijk2w4iaxcc5acsa0ihki4u8mm1anrt.png)
Taking square root on both sides, we get
![\sqrt{(768)/(\pi)}=r](https://img.qammunity.org/2022/formulas/mathematics/college/59lq30zv1iwmldlwyk3fci9w2fo38w3rfk.png)
![16\sqrt{(3)/(\pi)}=r](https://img.qammunity.org/2022/formulas/mathematics/college/ejtmtoifkbv308ttxfb2vqoqsw2csmvwi4.png)
Therefore, the value of r is
m.