173k views
4 votes
Hello! Verify the identity. Please show your work! Use trigonometric identities to verify each expression is equal.

Yes this is from edge.

Hello! Verify the identity. Please show your work! Use trigonometric identities to-example-1
User Hovestar
by
5.8k points

1 Answer

6 votes

Answer:

See Below.

Explanation:

We want to verify the identity:


\displaystyle \csc^2 x -2\csc x \cot x +\cot ^2 x = \tan^2\left((x)/(2)\right)

Note that the left-hand side is a perfect square trinomial pattern. Namely:


a^2-2ab+b^2=(a-b)^2

If we let a = csc(x) and b = cot(x), we can factor it as such:


\displaystyle (\csc x - \cot x)^2 = \tan^2\left((x)/(2)\right)

Let csc(x) = 1 / sin(x) and cot(x) = cos(x) / sin(x):


\displaystyle \left((1)/(\sin x)-(\cos x )/(\sin x)\right)^2=\tan^2\left((x)/(2)\right)

Combine fractions:


\displaystyle \left((1-\cos x)/(\sin x)\right)^2=\tan^2\left((x)/(2)\right)

Square (but do not simplify yet):


\displaystyle ((1-\cos x)^2)/(\sin ^2x)=\tan^2\left((x)/(2)\right)

Now, we can make a substitution. Let u = x / 2. So, x = 2u. Substitute:


\displaystyle ((1-\cos 2u)^2)/(\sin ^22u)=\tan^2u

Recall that cos(2u) = 1 - sin²(u). Hence:


\displaystyle ((1-(1-2\sin^2u))^2)/(\sin ^2 2u)=\tan^2u

Simplify:


\displaystyle (4\sin^4 u)/(\sin ^2 2u)=\tan^2 u

Recall that sin(2u) = 2sin(u)cos(u). Hence:


\displaystyle (4\sin^4 u)/((2\sin u\cos u)^2)=\tan^2 u

Square:


\displaystyle (4\sin^4 u)/(4\sin^2 u\cos ^2u)=\tan^2 u

Cancel:


\displaystyle (\sin ^2 u)/(\cos ^2 u)=\tan ^2 u

Since sin(u) / cos(u) = tan(u):


\displaystyle \left((\sin u)/(\cos u)\right)^2=\tan^2u=\tan^2u

We can substitute u back for x / 2:


\displaystyle \tan^2\left((x)/(2)\right)= \tan^2\left((x)/(2)\right)

Hence proven.

User Tashawn
by
5.5k points