Answer:
![\displaystyle -x^3+10x^2-48x+64](https://img.qammunity.org/2022/formulas/mathematics/college/i6hdzsvrvlfux04ub906j5nup3y5xc51d4.png)
Explanation:
We want to find the minimum-degree polynomial with real coefficients and zeros at:
![x= 4+4i\text{ and } x = 2](https://img.qammunity.org/2022/formulas/mathematics/college/h9jbhlpa52kv2kax07ueonkfsdelsp4748.png)
As well as a y-intercept of 64.
By the Complex Root Theorem, if a + bi is a root, then a - bi is also a root.
So, a third root will be 4 - 4i.
The factored form of a polynomial is given by:
![P(x)=a(x-p)(x-q)...](https://img.qammunity.org/2022/formulas/mathematics/college/8cucexgp0sbx9a0l5zeuovjo8q47hb0pol.png)
Where a is the leading coefficient and p and q are the zeros. More factors can be added if necessary.
Substitute:
![P(x)=a(x-(2))(x-(4+4i))(x-(4-4i))](https://img.qammunity.org/2022/formulas/mathematics/college/yf9yy8hii1un99ohvj1zilepcwlpidfve7.png)
Since we want the minimum degree, we won't need to add any exponents.
Expand the second and third factors:
![\displaystyle \begin{aligned} (x-(4+4i))(x-(4-4i))&=(x-4-4i)(x-4+4i) \\ &= x(x-4-4i)-4(x-4-4i)+4i(x-4-4i)\\ &=x^2-4x-4ix-4x+16+16i+4ix-16i-16i^2\\ &= x^2-8x+32\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/anaqb27b5nu2ugita77cj4sxty22652ve2.png)
Hence:
![P(x)=a(x-2)(x^2-8x+32)](https://img.qammunity.org/2022/formulas/mathematics/college/84azqt89b91m8oyo6vm3joqwpseb4s84pu.png)
Lastly, we need to determine a. Since the y-intercept is y = 64, this means that when x = 0, y = 64. Thus:
![64=a(0-2)(0^2-8(0)+32)](https://img.qammunity.org/2022/formulas/mathematics/college/fkgxnrk9jr540m7s0cm27tyuuha42js8di.png)
Solve for a:
![-64a=64\Rightarrow a=-1](https://img.qammunity.org/2022/formulas/mathematics/college/lj8u6nuovz8u6gj8vdb8yo6soy3xp4778z.png)
Our factored polynomial is:
![P(x)=-(x-2)(x^2-8x+32)](https://img.qammunity.org/2022/formulas/mathematics/college/tg99cbh0k65x3k5ikzexyfnh8nt8ghb1vu.png)
Finally, expand:
![\displaystyle \begin{aligned} P(x) &=-(x^2(x-2)-8x(x-2)+32(x-2)) \\&=-(x^3-2x^2-8x^2+16x+32x-64)\\&=-(x^3-10x^2+48x-64)\\&= -x^3+10x^2-48x+64\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/o2focqw20xxu2okcphyp4q3ylwcyqwuox0.png)