Given:
In
and
.
To find:
The
.
Solution:
In
,
![\overline{QR}\cong \overline{SQ}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nxsxgciibocz3tw8garyttz64gd7c9wzu6.png)
It means the triangle QRS is an isosceles triangle. We know that the base angles of an isosceles triangle are congruent and their measures are equal.
[Base angles of isosceles triangle QRS]
...(i)
In
,
![m\angle Q+m\angle R+m\angle S=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/yy18o99kjq5634936zur92jv8yzihhgk2a.png)
[Using (i)]
![114^\circ+2m\angle S=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/wbc8vpdw3azxed0fbd7vqyyopba50dqnnk.png)
![2m\angle S=180^\circ-114^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/xz57mobblt3h48rt27sjmpyiixkp5jcpsd.png)
![2m\angle S=66^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/676url2n79uqg4hvbsq0o6vjmyikbir4dt.png)
Divide both sides by 2.
![m\angle S=(66^\circ)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9957k0pwwcyhlqd583nhnpvjlvx7nkwaw4.png)
![m\angle S=33^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/p4xr1fwexleer4lg0pkd2gcjl003qyr0g6.png)
Therefore, the
is 33 degrees.