201k views
0 votes
A photon with a frequency of 5.02 × 1014 hertz is absorbed by an excited hydrogen atom. This causes the electron to be ejected from the atom, forming an ion. Calculate the energy of this photon in joules. [Show all work, including the equation and substitution with units.] Determine the energy of this photon in electron-volts. What is the number of the lowest energy level (closest to the ground state) of a hydrogen atom that contains an electron that would be ejected by the absorption of this photon?

1 Answer

5 votes

Answer:

Step-by-step explanation:

An atom emits a photon (particle of light) when transitioning from a ground state to its excited state. To obey conservation of energy, the energy gained by the atom when an electron moves to a lower energy level is equal to the energy it loses in emitting the photon. (The energy of a photon is E = hf, where E is the energy, h is Planck's constant, and f is the frequency of the photon.) Conversely, when an atom absorbs a photon (as is the case in absorption spectra), the electron absorbing the photon moves to a higher energy level.

User Hommer Smith
by
3.6k points