204k views
4 votes
A 50 g copper calorimeter contains 250 g of water at 20 C. How much steam be condensed into the water to make the final temperature of the system 50 C. ( specific heat water= 4200 J/Kg C , specific heat copper= 390 J/Kg C

User Doingweb
by
4.0k points

1 Answer

4 votes

Answer:

Approximately
13\; \rm g of steam at
100\; \rm ^\circ C (assuming that the boiling point of water in this experiment is
100\; \rm ^\circ C\!.)

Step-by-step explanation:

Latent heat of condensation/evaporation of water:
2260\; \rm J \cdot g^(-1).

Both mass values in this question are given in grams. Hence, convert the specific heat values from this question to
\rm J \cdot g^(-1).

Specific heat of water:
4.2\; \rm J \cdot g^(-1)\cdot \rm K^(-1).

Specific heat of copper:
0.39\; \rm J \cdot g^(-1)\cdot K^(-1).

The temperature of this calorimeter and the
250\; \rm g of water that it initially contains increased from
20\; \rm ^\circ C to
50\; \rm ^\circ C. Calculate the amount of energy that would be absorbed:


\begin{aligned}& Q(\text{copper}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 0.39\; \rm J \cdot g^(-1)\cdot K^(-1) * 50\; \rm g * (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 585\; \rm J \end{aligned}.


\begin{aligned}& Q(\text{cool water}) \\ =\;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; \rm J \cdot g^(-1)\cdot K^(-1) * 250\; \rm g * (50\;{\rm ^\circ C} - 20\;{\rm ^\circ C}) \\ =\; & 31500\; \rm J \end{aligned}.

Hence, it would take an extra
585\; \rm J + 31500\; \rm J = 32085\; \rm J of energy to increase the temperature of the calorimeter and the
250\; \rm g of water that it initially contains from
20\; \rm ^\circ C to
50\; \rm ^\circ C.

Assume that it would take
x grams of steam at
100\; \rm ^\circ C ensure that the equilibrium temperature of the system is
50\; \rm ^\circ C.

In other words,
x\; \rm g of steam at
100\; \rm ^\circ C would need to release
32085\; \rm J as it condenses (releases latent heat) and cools down to
50\; \rm ^\circ C.

Latent heat of condensation from
x\; \rm g of steam:
2260\; {\rm J \cdot g^(-1)} * (x\; {\rm g}) = (2260\, x)\; \rm J.

Energy released when that
x\; {\rm g} of water from the steam cools down from
100\; \rm ^\circ C to
50\; \rm ^\circ C:


\begin{aligned}Q = \;& c \cdot m \cdot \Delta t \\ =\;& 4.2\; {\rm J \cdot g^(-1)\cdot K^(-1)} * (x\; \rm g) * (100\;{\rm ^\circ C} - 50\;{\rm ^\circ C}) \\ =\; & (210\, x)\; \rm J \end{aligned}.

These two parts of energy should add up to
32085\; \rm J. That would be exactly what it would take to raise the temperature of the calorimeter and the water that it initially contains from
20\; \rm ^\circ C to
50\; \rm ^\circ C.


(2260\, x)\; {\rm J} + (210\, x)\; {\rm J} = 32085\; \rm J.

Solve for
x:


x \approx 13.

Hence, it would take approximately
13\; \rm g of steam at
100\; \rm ^\circ C for the equilibrium temperature of the system to be
50\; \rm ^\circ C.

User Khoa Nguyen
by
4.3k points