Answer:
The given equations are;
x = (a + b)²
y = a² + 2·a·b + b²
z = a² + b² - 2·a·b
(a) The numerical coefficients of z terms are
1, 1, -2
The sum of the numerical coefficients = 1 + 1 - 2 = 0
(b) y + z is found by substituting the values of 'y' and 'z', in the expression y + z, as follows;
y + z = a² + 2·a·b + b² + a² + b² - 2·a·b = 2·a² + 2·b²
y + z = 2·a² + 2·b²
y - z = a² + 2·a·b + b² - (a² + b² - 2·a·b) = 4·a·b
(c) Given that a = 3, and b = -2, we have;
x = (a + b)² = a² + a·b + a·b + b² = a² + 2·a·b + b² = y
Therefore, x = y, for all values of 'a', and 'b'
Explanation: