171k views
3 votes
Make a substitution to express the integrand as a rational function and then evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) x 49 x dx

1 Answer

0 votes

Answer:


\int{(√(x + 49))/(x)} \, dx =2√(x + 49) +49\ln|(√(x + 49)-7)/(√(x + 49)+7)|+c

Explanation:

Given


\int\limits {(√(x + 49))/(x)} \, dx

Required

Solve by substitution

Let:


u = √(x + 49)

Square both sides


u^2 = x + 49

Differentiate


2udu = dx

Also notice that:


x = u^2 - 49

So, we have:


\int\limits {(√(x + 49))/(x)} \, dx =\int\limits {(u)/(u^2 - 49)} \, 2udu


\int\limits {(√(x + 49))/(x)} \, dx =\int\limits {(2u^2)/(u^2 - 49)} \, du

Add 0 to the numerator


\int\limits {(√(x + 49))/(x)} \, dx =\int\limits {(2u^2+0)/(u^2 - 49)} \, du

Express 0 as 98 -98


\int\limits {(√(x + 49))/(x)} \, dx =\int\limits {(2u^2-98+98)/(u^2 - 49)} \, du

Split the fraction


\int{(√(x + 49))/(x)} \, dx =\int( (2u^2-98)/(u^2 - 49)+(98)/(u^2 - 49) )\, du


\int{(√(x + 49))/(x)} \, dx =\int( (2(u^2-49))/(u^2 - 49)+(98)/(u^2 - 49) )\, du


\int{(√(x + 49))/(x)} \, dx =\int( 2+(98)/(u^2 - 49) )\, du

Rewrite as:


\int{(√(x + 49))/(x)} \, dx =\int( 2+(98)/(u^2 - 7^2) )\, du

Integrate


\int{(√(x + 49))/(x)} \, dx =2u +\int(98)/(u^2 - 7^2) \, du

Remove constant (98)


\int{(√(x + 49))/(x)} \, dx =2u +98\int(1)/(u^2 - 7^2) \, du

As a general rule,


\int (1)/(x^2 - a^2) \, dx = (1)/(2)\ln|(x-a)/(x+a)|

So, we have:


\int (1)/(u^2 - 7^2) \, du = (1)/(2)\ln|(u-7)/(u+7)|


\int{(√(x + 49))/(x)} \, dx =2u +98(1)/(u^2 - 7^2) \, du becomes


\int{(√(x + 49))/(x)} \, dx =2u +98*(1)/(2)\ln|(u-7)/(u+7)|+c


\int{(√(x + 49))/(x)} \, dx =2u +49\ln|(u-7)/(u+7)|+c

Substitute values for u


\int{(√(x + 49))/(x)} \, dx =2√(x + 49) +49\ln|(√(x + 49)-7)/(√(x + 49)+7)|+c

User Blackpen
by
5.4k points