56.6k views
4 votes
Which expression is equivalent to Cube root of 343 x Superscript 9 Baseline y Superscript 12 Baseline z Superscript 6?

7x3y4z2
7x3y6z2
49x3y6z2
49x3y4z2

User Ibezito
by
5.4k points

2 Answers

2 votes

Answer:


\small \sf \leadsto \: 7x {}^(3)y {}^(6)z {}^(2)

Explanation:


\small \sf \leadsto \: \sqrt[3]{343 \: x {}^(9) \: y{}^(12) \: z {}^(6) }


\small \sf \leadsto \: \sqrt[3]{7x {}^(3)y {}^(6)z {}^(2) }


\small \sf \leadsto \: 7x {}^(3)y {}^(6)z {}^(2)

User Stephmoreland
by
5.2k points
3 votes

9514 1404 393

Answer:

7x^3y^4z^2

Explanation:


\displaystyle\sqrt[3]{343x^9y^12z^6}=\sqrt[3]{(7x^3y^4z^2)^3}=\boxed{7x^3y^4z^2}

User Ranish
by
5.3k points