163k views
3 votes
Solve 5x2-2x-8=0 using the quadratic formula.

2 Answers

0 votes

Answer:


x=(1+√(41))/(5),\\x=(1-√(41))/(5)

Explanation:

The quadratic formula states that the solutions for a quadratic is standard form
ax^2+bx+c are equal to
x=(-b\pm √(b^2-4ac))/(2a).

In
5x^2-2x-8=0, we can assign the values:


  • a of 5

  • b of -2

  • c of -8

Thus, we have:


x=(-(-2)\pm √((-2)^2-4(5)(-8)))/(2(5)),\\x=(2\pm √(164))/(10),\\\begin{cases}x=(2+ √(164))/(10), x=(1)/(5)+(√(41))/(5)=(1+√(41))/(5)\\x=(2- √(164))/(10), x=(1)/(5)-(√(41))/(5)=(1-√(41))/(5)\end{cases}

User Barbarity
by
4.2k points
3 votes

Answer:

(1+√41)/5, (1-√41)/5

Explanation:

quadratic formula is (-b±√(b^2-4ac))/2a

in this equation,

a = 5

b = -2

c = -8

plug in the values

(2±√(4 - 4(5)(-8))/10

(2±√(4 + 160)/10

(2±√(164)/10

(2±2√(41))/10

1. (2+2√41)/10

(1+√41)/5

2. (2-2√41)/10

(1-√41)/5

User Astre
by
4.2k points