Answer:
Melissa needs to drive 325 miles for the two plans to cost the same
Explanation:
Plan A
Initial Fee = 65
Additional cost per mile = 0.50 per mile
Plan B
Initial Fee = 0
Additional cost per mile = 0.70 per mile
Required
Mile both plans will cost the same
Let
![y \to cost](https://img.qammunity.org/2022/formulas/mathematics/college/3iotpv9ftbodtdl2hqt9fanvvx8o7sydcj.png)
![x \to miles](https://img.qammunity.org/2022/formulas/mathematics/college/m9nfq2bmghp2h518k1kivj1llobehycrw0.png)
So, we have:
![y = Initial\ Fee + Additional * x](https://img.qammunity.org/2022/formulas/mathematics/college/t8rd1arekp1199psouad5tstulqrztxalk.png)
For plan A
![y = 65+ 0.50* x](https://img.qammunity.org/2022/formulas/mathematics/college/h20ycr2izpty4wljd9zhofr4lw6rh2u31q.png)
![y = 65+ 0.50x](https://img.qammunity.org/2022/formulas/mathematics/college/s0p2y9tu0ywyvyg4shwm7be2j7nj7gk8ts.png)
For plan B
![y = 0 + 0.70*x](https://img.qammunity.org/2022/formulas/mathematics/college/6k7dco17iwlp325lveab1fszo6spcas4rg.png)
![y = 0.70x](https://img.qammunity.org/2022/formulas/mathematics/college/t5yze5m2lmk51ltkjxuveo6lkziunmap3d.png)
So, we have:
--- plan A
--- plan B
Both plans will cost the same when
![y = y](https://img.qammunity.org/2022/formulas/mathematics/high-school/k9l04l5r33jzj816cmci4kbv0e25gz6tda.png)
![0.70x = 65 +0.50x](https://img.qammunity.org/2022/formulas/mathematics/college/iefcu1i30488xp21spx7ad6e8bng6e704h.png)
![0.70x -0.50x= 65](https://img.qammunity.org/2022/formulas/mathematics/college/uul8r6rd1o96hhnpsp8uiuhcmftohs6v9v.png)
![0.20x= 65](https://img.qammunity.org/2022/formulas/mathematics/college/yw6tnu8bplbu9zmtqiutl4tlalinwt64mh.png)
Divide by 0.20
![x= 325](https://img.qammunity.org/2022/formulas/mathematics/college/8oa9s12n14x5rzki03odpcy93rar50oda5.png)